tìm nghiệm nguyên của phương trình:
(x2-1)(x2-11)(x2-21)(x2-31)=-4224
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm tập nghiệm của bất phương trình 3 2 x + 1 - 3 x + 1 ≤ x 2 - 2 x là:
A. 0 ; + ∞
B. 0 ; 2
C. [ 2 ; + ∞ )
D. [ 2 ; + ∞ ) ∪ 0
Cho x1 x2 là nghiệm của phương trình x2 -2x-1 hãy lập 1 phương trình bậc 2 1 ẩn có 2 nghiệm là |(x1)3|.|(x2)3|
Tìm tập nghiệm của phương trình l o g ( x + 3 ) + l o g ( x - 1 ) = l o g ( x 2 - 2 x - 3 )
A. ∅
B. {0}
C. R
D. (1; +∞)
Giả sử x1, x2 là 2 nghiệm của phương trình : x^2 +2kx +4 = 4.
Tìm tất cả cácgiá trị của k sao cho có bất đẳng thức:
(x1/x2)^2 + (x2/x1)^2 >= 3
Tìm m để phương trình x^2-2x+m-1=0 có hai nghiệm x1, x2 thỏa mãn 2x1(x1- x2)+3=7m+(x2+2)^2
Cho bất phương trình x 4 + x 2 + m 3 - 2 x 2 + 1 3 + x 2 x 2 - 1 > 1 - m . Tìm tất cả các giá trị thực của tham số m để bất phương trình trên nghiệm đúng ∀ x > 1 .
Cho phương trình x2 +( m-1)x - m = 0 (5)
a/ Chứng tỏ rằng phương trình (5) luôn có nghiệm với mọi giá trị của m ?
b/ Gọi x1 và x2 là nghiệm của phương trình (5) Chứng minh hệ thức
x1^2 +x2^2 -2.x1.x2 -x1^2.x2^2 =2m+1
a: \(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)
=>(5) luôn có nghiệm
b: \(x_1^2+x_2^2-2x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(m-1\right)^2-4\cdot\left(-m\right)-\left(-m\right)^2=2m+1\)
=>\(m^2-2m+1+4m-m^2=2m+1\)
=>2m+1=2m+1(luôn đúng)
Cho phương trình: x2 + 5x + m – 2 = 0 (m là tham số).
Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thoả mãn: \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=2\)
\(\Delta=25-4\left(m-2\right)=25-4m+8=33-4m\)
Để pt có 2 nghiệm pb khi m =< 33/4
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=\dfrac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=2\)
Thay vào ta được : \(\dfrac{-7}{m-2+5+1}=2\Leftrightarrow\dfrac{-7}{m+4}=2\Rightarrow-7=2m+8\Leftrightarrow m=-\dfrac{15}{2}\)(tm)
\(Pt:x^2+5x+m-2=0.có.2.nghiệm.phân.biệt\\ x_1,x_2\ne1\\ \Leftrightarrow\left\{{}\begin{matrix}\Delta=5^2-4\left(m-2\right)=33-4m>0\\1^2+5.1+m-2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{33}{4}\\m\ne-4\end{matrix}\right.\)
Theo định lí Vi ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=m-2\end{matrix}\right.\\ Từ.giả.thiết:\\ \dfrac{ 1}{x_1-1}+\dfrac{1}{x_2-1}=2\\ \Rightarrow x_2-1+x_1-1=2\left(x_1-1\right)\left(x_2-1\right)\\ \Leftrightarrow\left(x_1+x_2\right)-2=2\left[x_1x_2-\left(x_1+x_2\right)+1\right]\\ \Leftrightarrow-5-2=2\left(m-2+5+1\right)\Leftrightarrow-7=2\left(m+4\right)\\ \Rightarrow m=\dfrac{-15}{2}\)
Giả sử x 1 , x 2 là các nghiệm của phương trình x 2 - x - 3 .
Giá trị của biểu thức 1 x 1 + 1 x 2 là
A. 1 3
B. - 1 3
C. 3
D. - 3