Những câu hỏi liên quan
NY
Xem chi tiết
LD
5 tháng 9 2016 lúc 16:53

Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 

o

* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

Bình luận (0)
LN
Xem chi tiết
NK
17 tháng 3 2016 lúc 11:23

xOy va yOz ke bu

=>xOy + yOz = 180

=>xOy/2 + yOz/2= 90

Bình luận (0)
LC
Xem chi tiết
NT
14 tháng 9 2015 lúc 19:45

Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
=>: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

Bình luận (0)
KQ
Xem chi tiết
LA
9 tháng 9 2016 lúc 9:51


O x y z t a

Ta có: \(\widehat{xOz}+\widehat{yOz}=180\Rightarrow\frac{1}{2}\widehat{xOz}+\frac{1}{2}\widehat{yOz}=90\)

Mà: \(\widehat{tOz}=\frac{1}{2}\widehat{xOz};\widehat{aOz}=\frac{1}{2}\widehat{yOz}\)

\(\Rightarrow\widehat{tOz}+\widehat{aOz}=\frac{1}{2}\widehat{xOz}+\frac{1}{2}\widehat{yOz}\Rightarrow\widehat{tOz}+\widehat{aOz}=90\Rightarrow\widehat{tOa}=90\)

=> Ot vuông góc với Oa

=> 2 tia phân giác của 2 góc kề bù vuông góc với nhau

(Mình không biết viết kí hiệu độ nên bạn chịu khó để ý chỗ nào cần thêm kí hiệu thì thêm vào nhé)

Bình luận (0)
H24
Xem chi tiết
H24
2 tháng 4 2021 lúc 18:45

1,Cho 2 góc xOy và yOz kề bù .

Om ; On lần lượt là tia phân giác của 2 góc đó 

⇒{O1^=O2^=12.xOy^O3^=O4^=12.yOz^

⇒O2^+O3^=12(xOy^+yOz^)=12.1800=900

=> Đpcm

Bình luận (0)
 Khách vãng lai đã xóa
H24
2 tháng 4 2021 lúc 18:46

2,

Ta có:

   mOy+nOy=90o( gt )

⇒xOm+zOn=90o

Mà xOm=mOy( Om là tia phân giác góc xOy )

⇒nOy=zOn

On là tia phân giác góc yOz.

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
IM
1 tháng 10 2016 lúc 19:42

x y z O m n

Cho \(\widehat{xOy};\widehat{yOz}\) là 2 góc kề bù

\(\Rightarrow\widehat{xOy}+\widehat{yOz}=180^0\)

Gọi Om ; On lần lượt là tia phân giác của 2 goc đó

\(\Rightarrow\begin{cases}\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\\\widehat{nOy}=\frac{1}{2}.\widehat{yOz}\end{cases}\)

\(\Rightarrow\widehat{mOy}+\widehat{nOy}=\frac{\widehat{xOy}+\widehat{yOx}}{2}\)

\(\Rightarrow\widehat{mOn}=\frac{180^0}{2}\)

\(\Rightarrow\widehat{mOn}=90^0\)

=> đpcm

Bình luận (0)
NT
1 tháng 10 2016 lúc 19:38

Ta có : 

 Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
=> Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau

Bình luận (0)
TH
Xem chi tiết
H24
2 tháng 10 2016 lúc 11:23

Vì 2 góc kề bù = 1800 mà 1800 : 2= 90 ( góc vuông)  nên suy ra :

2 tia phân giác của 2 góc kề bù vuông góc với nhau ( đpcm)

Bình luận (0)
KK
2 tháng 10 2016 lúc 11:26

Ta có hình sau : 

O x z y a b 1 2 3 4 \

VÌ Oa là phân giác của O12

=> O1 = O2 =2.O1 = 2.O2 O12/2 

Vì Ob là phân giác của O34 

=> O3 = O4 = 2.O3 = 2.O4 = O34/2

Ta có : 

O12 + O34 = 180

=> O1 + O2 + O3 + O4 = 180 

Ta thay O1 = O2 ; O4 = O3 

=> O2 + O2 + O3 + O3 = 180 

=> 2.O2 + 2.O3 + 180 

=> 2.(O2 + O3) = 180 

=> O2 + O3 = 90 

Điều phải chứng minh 

Bình luận (1)
ND
2 tháng 10 2016 lúc 11:27

Gọi x0y và y0z là hai góc kề bù , ot là pg x0y ; 0t' là pg của y0z.

Ta có :

y0t = 1/2 x0y ( ot là pg)  (1)

y0t' = 1/2 y0x ( 0t' là pg)  (2)

x0y + y0z = 180 độ ( kề bù)

Từ (1) và (2) => y0t + yot' = 1/2( xoy+ y0z)= 1/2 .180 = 90 độ 

=> t0t' = 90 độ 

hay 0t vuông góc với 0t' => Đpcm

Bình luận (0)
BY
Xem chi tiết
KL
24 tháng 6 2016 lúc 21:29

Gọi : góc xOy kề bù với góc yOz . Ot là tia phân giác của góc xOy . Ot' là tia phân giác của góc xOz (bạn tự vẽ hình nha).

Ta có :

Do Ot là tia phân giác của góc xOy nên góc \(xOt=tOy=\frac{1}{2}xOy\) .

Do Ot' là tia phân giác của góc yOz nên góc \(yOt'=t'Oz=\frac{1}{2}yOz\).

\(\Leftrightarrow\) Góc \(tOy+yOt'=\frac{1}{2}xOy+\frac{1}{2}yOz=\frac{1}{2}\left(xOy+yOz\right)\) .

Mà \(xOy+yOz=180\left(độ\right)\) .

Do đó : \(tOy+yOt'=\frac{1}{2}\left(xOy+yOz\right)=\frac{1}{2}.180\left(độ\right)=90\left(độ\right)\) .

Vậy : Hai tia phân giác của 2 góc kề bù vuông góc với nhau .

Bình luận (0)
DV
24 tháng 6 2016 lúc 22:14

Gọi \(\widehat{xOy}\) và \(\widehat{yOz}\) là hai góc kề bù, Om và On lần lượt là hai tia phân giác của hai góc đó

Vì Om và On lần lượt là các tia phân giác của \(\widehat{xOy}\) và nên

\(\begin{cases}\widehat{mOy}=\frac{1}{2}\widehat{xOy}\\\widehat{yOn}=\frac{1}{2}\widehat{yOz}\end{cases}\) => \(\begin{cases}2\widehat{mOy}=\widehat{xOy}\\2\widehat{yOn}=\widehat{yOz}\end{cases}\)

Ta lại có \(\widehat{xOy}+\widehat{yOz}\) = 180 độ (vì \(\widehat{xOy}\) và \(\widehat{yOz}\) là hai góc kề bù)

=> 2\(\widehat{mOy}\) +2\(\widehat{yOn}\) =180

=>2(\(\widehat{mOy}+\widehat{yOn}\))=180

=>\(\widehat{mOy}+\widehat{yOn}\) = 90

=>Om vuông góc với On

=>đpcm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bình luận (0)
LD
24 tháng 6 2016 lúc 21:50

* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

Bình luận (0)
CO
Xem chi tiết
MT
21 tháng 6 2015 lúc 20:06

O x z y u v

* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

Bình luận (0)