A= \(\left(x+y\right)\left(x-1\right)+x\left(2-x-y\right)+1\)
Rút gọn
Rút gọn : \(H=\frac{x^2y^2}{\left(x+1\right)\left(y-1\right)}+\frac{x^2}{\left(x+y\right)\left(y-1\right)}+\frac{y^2}{\left(x+1\right)\left(x+y\right)}\)
Rút gọn các biểu thức sau:
a/ \(\left(x-2y^{ }\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
b/ \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)
\(=2x^2-4xy+\dfrac{15}{4}y^2\)
b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)
\(=2x^2+2x+13-2x^2+2\)
=2x+15
a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)
b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)
\(=2x+15\)
a; \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
= \(x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)
= \(2x^2-4xy+\dfrac{15}{4}y^2\)
b; \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
= \(x^2-4x+4+x^2+6x+9-2x^2+2\)
= \(2x+15\)
Rút gọn
a) \(x.\left(x+4\right).\left(x-4\right)-\left(x^2+1\right).\left(x-1\right)\)
b) \(\left(y-3\right).\left(y+3\right).\left(y^2+9\right)-\left(y^2+2\right).\left(y^2-2\right)\)
a) \(x\left(x^2-16\right)-\left(x^2+1\right)\left(x-1\right)\) =\(x^3-16x^2-x^3+x^2-x+1\)
= \(x^2-17x+1\)
b) \(\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\) = \(\left(y^4-81\right)-\left(y^4-16\right)\)
=\(-65\)
Rút gọn: \(\frac{x^2}{\left(x+y\right)\cdot\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\cdot\left(1+x\right)}-\frac{x^2\cdot y^2}{\left(x+1\right)\cdot\left(1-y\right)}\)
MTC: (x+y)(x+1)(1-y)
\(=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}=\frac{\left(x+y\right)\left(1+x\right)\left(1-y\right)\left(x-y+xy\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)
\(=x-y+xy\)
Với \(x\ne-1;x\ne-y;y\ne1\)thì giá trị biểu thức được xác định
rút gọn
A=\(\frac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)
\(\frac{x^2y-y^2+x^2-y+x^2y^2-1}{x^2y+y^2+x^2+y+x^2y^2+1}=\frac{\left(x^2y-y\right)+\left(x^2y^2-y^2\right)+\left(x^2-1\right)}{\left(x^2y+y\right)+\left(x^2y^2+y^2\right)+\left(x^2+1\right)}\)
=\(\frac{\left(x^2-1\right)\cdot\left(y^2+y+1\right)}{\left(x^2+1\right)\cdot\left(y^2+y+1\right)}\)=\(\frac{x^2-1}{x^2+1}\)
Rút gọn biểu thức \(M=\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2-y^2}{\left(1+x\right)\left(1-y\right)}\)
Rút gọn
\(\left(x+y+1\right)^3-\left(x+y-1\right)^3-6\left(x+y\right)^2\)
`(x+y+1)^3 - (x+y-1)^3 - 6(x+y)^2`
`=(x+y+1-x-y+1)[(x+y+1)^2 + (x+y+1)(x+y-1) + (x+y-1)^2] - 6(x+y)^2`
`=2(x^2+y^2 + 2xy+2x+2y + 1 + x^2 + 2xy +y^2 - 1 + x^2 + y^2 + 1 +2xy - 2x - 2y) - 6(x^2 + 2xy + y^2)`
`=2(3x^2 + 3y^2 + 6xy +1) - 6x^2 - 12xy - 6y^2`
`=6x^2 + 6y^2 + 12xy + 2 - 6x^2 - 12xy - 6y^2`
`=2`
\(=x^3+y^3+1-x^3-y^3+1-6\left(x^2+2xy+y^2\right)\\ =-6x^2-12xy+-6y^2+2\)
Rút gọn các biểu thức sau :
A = \(2x^2\left(-3x^3+2x^2+x-1\right)+2x\left(x^2-3x+1\right)\)
B = \(2x:\dfrac{1}{2}x+x^2\)
C = \(\left[1:\left(1+x\right)+2x:\left(1-x^2\right)\right]:\left(\dfrac{1}{x}-1\right)\)
D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
Rút gọn các biểu thức sau :
A = \(2x^2\left(-3x^3+2x^2+x-1\right)+2x\left(x^2-3x+1\right)\)
B = \(2x:\dfrac{1}{2}x+x^2\)
C = \(\left[1:\left(1+x\right)+2x:\left(1-x^2\right)\right]:\left(\dfrac{1}{x}-1\right)\)
D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)