PTĐTTNT : x^3 - x^2 - 7x + 15
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
PTĐTTNT bằng 3 cách
a)x^2+7x+12
b)3x^2-5x+2
c)x^2+9x-10
d)x^2-7x-8
e)2x^2+3x-5
a) \(x^2+7x+12\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
b) \(3x^2-5x+2\)
\(=3x^2-3x-2x+2\)
\(=3x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-2\right)\)
a) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x(x + 3) + 4(x + 3) = (x + 4)(x + 3)
b) 3x2 - 5x + 2 = 3x2 - 3x - 2x + 2 = 3x(x - 1) - 2(x - 1) = (3x - 2)(x - 1)
c) x2 + 9x - 10 = x2 + 10x - x - 10 = x(x + 10) - (x + 10) = (x - 1)(x + 10)
d) x2 - 7x - 8 = x2 - 8x + x - 8 = x(x - 8) + (x - 8) = (x + 1)(x - 8)
e) 2x2 + 3x - 5 = 2x2 + 5x - 2x - 5 = x(2x + 5) - (2x + 5) = (x - 1)(2x + 5)
PTĐTTNT:
\(x^4+4x^3+5x^2+7x+3\)
Hệ số bất định thử xem sao nha ! Check luôn nha Nguyễn Tấn Phát ~
Nháp:
Ta nhẩm nghiệm được \(a=-3\) nên khi phân tích nó sẽ có nhân tử là \(x+3\)
Giả sử khi phân tích thành nhân tử nó sẽ có dạng:\(\left(x+3\right)\left(x^3+ax^2+bx+c\right)\)
\(=x^4+ax^3+bx^2+cx+3x^3+3ax^2+3bx+3c\)
\(=x^4+\left(a+3\right)x^3+\left(3a+b\right)x^2+\left(c+3b\right)x+3c\)
Mà \(\left(x+3\right)\left(x^3+ax^2+bx+c\right)=x^4+4x^3+5x^2+7x+3\)
Cân bằng hệ số ta được:
\(a=1;b=2;c=1\)
Khi đó \(x^4+4x^3+5x^2+7x+3=\left(x+3\right)\left(x^3+x^2+2x+1\right)\)
Bài làm
Ta có:
\(x^4+4x^3+5x^2+7x+3\)
\(=\left(x^4+x^3+2x^2+x\right)+\left(3x^3+3x^2+6x+3\right)\)
\(=x\left(x^3+x^2+2x+1\right)+3\left(x^3+x^2+2x+1\right)\)
\(=\left(x+3\right)\left(x^3+x^2+2x+1\right)\)
P/S:Mik nghĩ đến đây là hết rồi:3
PTĐTTNT:
a) \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
c) \(x-1+x^{n+3}-x^n\)
d) \(2x^4-7x^3-2x^2+13x+6\)
a) \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
Đặt \(x^2+x=t\), đa thức trở thành : \(t^2-2t-15\)
= \(\left(t+3\right)\left(t-5\right)\)
\(=\left(x^2+x+3\right)\left(x^2+x-5\right)\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+2ab+2ac+2bc-a^3-b^3-c^3\)
\(=2ab+2ac+2bc=2\left(ab+ac+bc\right)\)
c) \(x-1+x^{n+3}-x^n\)
\(=x-1+x^n\left(x^3-1\right)\)
\(=x-1+x^n\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x^{n+2}+x^{n+1}+x^n+1\right)\)
d) \(2x^4-7x^3-2x^2+13x+6\)
\(=\left(2x^4+2x^3\right)-\left(9x^3+9x^2\right)+\left(7x^2+7x\right)+\left(6x+6\right)\)
\(=\left(x+1\right)\left(2x^3-9x^2+7x+6\right)\)
\(=\left(x+1\right)\left[\left(2x^3+x^2\right)-\left(10x^2+5x\right)+\left(12x+6\right)\right]\)
\(=\left(x+1\right)\left(2x+1\right)\left(x^2-5x+6\right)\)
\(=\left(x+1\right)\left(2x+1\right)\left(x-2\right)\left(x-3\right)\)
PTĐTTNT
a) x3 - 3x2 + 1 - 3x
b) 3x2 - 7x - 10
a) \(x^3-3x^2+1-3x=\left(x^3+1\right)-\left(3x^2+3x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
b) \(3x^2-7x-10=3x^2+3x-10x-10\)
\(=3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-10\right)\)
a) \(x^3-3x^2-3x+1=\left(x^3+1\right)-\left(3x^2+3x\right)\)
= \(\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2-x+1-3x\right)\)
= \(\left(x+1\right)\left(x^2-4x+1\right)\)
b) \(3x^2-7x-10=\left(3x^2+3x\right)-\left(10x+10\right)\)
= \(3x\left(x+1\right)-10\left(x+1\right)\)
= \(\left(x+1\right)\left(3x-10\right)\)
PTĐTTNT:
a) \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
c) \(x-1+x^{n+3}-x^n\)
d) \(2x^4-7x^3-2x^2+13x+6\)
a) Ta có: \(8x^2+30x+7\)
\(=8x^2+28x+2x+7\)
\(=4x\left(2x+7\right)+\left(2x+7\right)\)
\(=\left(2x+7\right)\left(4x+1\right)\)
b) Ta có: \(4x^3-12x^2+9x\)
\(=x\left(4x^2-12x+9\right)\)
\(=x\left(2x-3\right)^2\)
c) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(=\left(x+2\right)\cdot3x\)
d) Ta có: \(ab+c^2-ac-bc\)
\(=\left(ab-bc\right)+\left(c^2-ac\right)\)
\(=b\left(a-c\right)+c\left(c-a\right)\)
\(=b\left(a-c\right)-c\left(a-c\right)\)
\(=\left(a-c\right)\left(b-c\right)\)
e) Ta có: \(4x^2-y^2+1-4x\)
\(=\left(4x^2-4x+1\right)-y^2\)
\(=\left(2x-1\right)^2-y^2\)
\(=\left(2x-1-y\right)\left(2x-1+y\right)\)
f) Ta có: \(6x^2-7x-20\)
\(=6x^2-15x+8x-20\)
\(=3x\left(2x-5\right)+4\left(2x-5\right)\)
\(=\left(2x-5\right)\left(3x+4\right)\)
\(4x^3-12x^2+9x=x\left(4x^2-12x+9\right)=x\left(2x-3\right)^2\), \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)
\(ab+c^2-ac-bc=ab-ac-bc+c^2=a\left(b-c\right)-c\left(b-c\right)=\left(b-c\right)\left(a-c\right)\)
\(4x^2-y^2+1-4x=4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-y-1\right)\left(2x+y-1\right)\)
\(6x^2-7x-20=6x^2-15x+8x-20=3x\left(2x-5\right)+4\left(2x-5\right)=\left(2x-5\right)\left(3x+4\right)\)
\(8x^2+30x+7=8x^2+2x+28x+7=2x\left(4x+1\right)+7\left(4x+1\right)=\left(4x+1\right)\left(2x+7\right)\)
1.PTĐTTNT
a, x^2-2xy-25-y^2
b, x( x-1)+y (1-x)
c, 7x+7y-(x-y)
d, x^4+y^4
2, Chứng minh rằng:
a, x^2-5x+3≥0
b, -x^2+3x-4<0 với mọi x
Bài 1:
a) \(x^2-2xy-25+y^2\) (Sửa đề)
\(=x^2-2xy+y^2-25\)
\(=\left(x-y\right)^2-5^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
Vậy ...
b) \(x\left(x-1\right)+y\left(1-x\right)\)
\(=x\left(x-1\right)-y\left(x-1\right)\)
\(=\left(x-1\right)\left(x-y\right)\)
Vậy ...
c) \(7x+7y-\left(x+y\right)\) (Sửa đề)
\(=7\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(7-1\right)\)
\(=6\left(x+y\right)\)
Vậy ...
d) \(x^4+y^4\)
\(=\left(x^2\right)^2+\left(y^2\right)^2\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left(x^2+y^2-\sqrt{2}xy\right)\left(x^2+y^2+\sqrt{2}xy\right)\)
Vậy ...
Bạn xem lại 1 sô câu sai và bài 2 hộ mk
PTĐTTNT :
`-(x+2)+3(x^2-4)`
\(-\left(x+2\right)+3\left(x^2-4\right)\)
\(=3\left(x-2\right)\left(x+2\right)-\left(x+2\right)\)
\(=\left(x+2\right)\left[3\left(x-2\right)-1\right]=\left(x+2\right)\left(3x-7\right)\)
giúp mình với
PTĐTTNT
2x^4-7x^3+11x^2-13x+12