\(-\dfrac{2}{6}< \dfrac{x}{-36}< \dfrac{5}{y}< \dfrac{2}{-8}\)
Thực hiện phép tính:
\(a)\dfrac{{3{\rm{x}} + 6}}{{4{\rm{x}} - 8}}.\dfrac{{2{\rm{x}} - 4}}{{x + 2}}\)
\(b)\dfrac{{{x^2} - 36}}{{2{\rm{x}} + 10}}.\dfrac{{x + 5}}{{6 - x}}\)
\(c)\dfrac{{1 - {y^3}}}{{y + 1}}.\dfrac{{5y + 5}}{{{y^2} + y + 1}}\)
\(d)\dfrac{{x + 2y}}{{4{{\rm{x}}^2} - 4{\rm{x}}y + {y^2}}}.\left( {2{\rm{x}} - y} \right)\)
\(a)\dfrac{{3{\rm{x}} + 6}}{{4{\rm{x}} - 8}}.\dfrac{{2{\rm{x}} - 4}}{{x + 2}} = \dfrac{{3\left( {x + 2} \right).2\left( {x - 2} \right)}}{{4.\left( {x - 2} \right).\left( {x + 2} \right)}} = \dfrac{3}{2}\)
\(b)\dfrac{{{x^2} - 36}}{{2{\rm{x}} + 10}}.\dfrac{{x + 5}}{{6 - x}} = \dfrac{{\left( {x - 6} \right)\left( {x + 6} \right)\left( {x + 5} \right)}}{{2\left( {x + 5} \right).\left( { - 1} \right)\left( {x - 6} \right)}} = \dfrac{{x + 6}}{{ - 2}} = \dfrac{{-x- 6}}{{ 2}}\)
\(c)\dfrac{{1 - {y^3}}}{{y + 1}}.\dfrac{{5y + 5}}{{{y^2} + y + 1}} = \dfrac{{\left( {1 - y} \right)\left( {1 + y + {y^2}} \right).5\left( {y + 1} \right)}}{{\left( {y + 1} \right).\left( {{y^2} + y + 1} \right)}} = 5\left( {1 - y} \right)\)
\(d)\dfrac{{x + 2y}}{{4{{\rm{x}}^2} - 4{\rm{x}}y + {y^2}}}.\left( {2{\rm{x}} - y} \right) = \dfrac{{\left( {x + 2y} \right).\left( {2{\rm{x}} - y} \right)}}{{{{\left( {2{\rm{x}} - y} \right)}^2}}} = \dfrac{{x + 2y}}{{2{\rm{x}} - y}}\)
Bài 2: Tìm x, biết:
a) \(\left(x-\dfrac{5}{8}\right).\dfrac{5}{18}=-\dfrac{15}{36}\)
b) \(\left(x-\dfrac{1}{3}\right)=\dfrac{5}{6}\)
\(a,\left(x-\dfrac{5}{8}\right)\cdot\dfrac{8}{18}=-\dfrac{15}{16}\\ x-\dfrac{5}{8}=-\dfrac{15}{36}:\dfrac{8}{18}\\ x-\dfrac{5}{8}=-\dfrac{15}{16}\\ x=-\dfrac{15}{16}+\dfrac{5}{8}\\ x=-\dfrac{15}{16}+\dfrac{10}{16}\\ x=-\dfrac{5}{16}\\ b,x-\dfrac{1}{3}=\dfrac{5}{6}\\ x=\dfrac{5}{6}+\dfrac{1}{3}\\ x=\dfrac{5}{6}+\dfrac{2}{6}\\ x=\dfrac{7}{6}\)
\(a,\left(x-\dfrac{5}{8}\right).\dfrac{5}{8}=-\dfrac{15}{36}\)
\(\left(x-\dfrac{5}{8}\right)=-\dfrac{15}{36}\div\dfrac{5}{8}\)
\(x-\dfrac{5}{8}=-\dfrac{2}{3}\)
\(x=-\dfrac{2}{3}+\dfrac{5}{8}\)
\(x=-\dfrac{1}{24}\)
\(b,\left(x-\dfrac{1}{3}\right)=\dfrac{5}{6}\)
\(\Rightarrow x-\dfrac{1}{3}=\dfrac{5}{6}\)
\(x=\dfrac{5}{6}+\dfrac{1}{3}\)
\(x=\dfrac{7}{6}\)
\(a)\left(x-\dfrac{5}{8}\right).\dfrac{5}{18}=-\dfrac{15}{36}\)
\(\left(x-\dfrac{5}{8}\right).\dfrac{5}{18}=\dfrac{-5}{12}\)
\(\left(x-\dfrac{5}{8}\right)\) \(=\dfrac{-5}{12}\div\dfrac{5}{18}=\dfrac{-3}{2}\)
\(x\) \(=\left(\dfrac{-3}{2}\right)+\dfrac{5}{8}=\dfrac{-7}{8}\)
\(b)\left(x-\dfrac{1}{3}\right)=\dfrac{5}{6}\)
\(x\) \(=\dfrac{5}{6}+\dfrac{1}{3}\)
\(x\) \(=\dfrac{7}{6}\)
bài 1 : Tìm y
\(\dfrac{7}{8}xy-\dfrac{6}{4}=\dfrac{3}{2}\) \(\dfrac{2}{5}:y+\dfrac{1}{5}:y=\dfrac{10}{3}\)
bài 2 : Tính nhanh
\(\dfrac{2}{5}x\dfrac{4}{7}+\dfrac{2}{5}x\dfrac{3}{7}\) \(\dfrac{2}{9}:\dfrac{2}{3}:\dfrac{3}{9}\)
Bài 1:
+) \(\dfrac{7}{8}\times y=\dfrac{3}{2}+\dfrac{6}{4}=3\)
\(y=3:\dfrac{7}{8}=\dfrac{24}{7}\)
+) \(\dfrac{1}{y}\times\left(\dfrac{2}{5}+\dfrac{1}{5}\right)=\dfrac{10}{3}\)
\(\dfrac{1}{y}=\dfrac{10}{3}:\dfrac{3}{5}=\dfrac{50}{9}\)
\(y=\dfrac{9}{50}\)
Bài 2:
+) \(=\dfrac{2}{5}\times\left(\dfrac{4}{7}+\dfrac{3}{7}\right)\)
\(=\dfrac{2}{5}\times\dfrac{7}{7}=\dfrac{2}{5}\)
+) \(\dfrac{2}{9}:\dfrac{2}{3}:\dfrac{3}{9}\)
\(\dfrac{2}{9}\times\dfrac{3}{2}\times\dfrac{9}{3}=1\)
1.\(\dfrac{x}{2}=\dfrac{y}{5}\)và x+y=21 2.7x=3y và x-y=16
3.\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}\)và x-y-z=36 4.x:y:z=3:5:7 và 2x+3y-z=-14
\(1,\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{21}{7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=15\end{matrix}\right.\\ 2,7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\\ \Rightarrow\left\{{}\begin{matrix}x=-12\\y=-28\end{matrix}\right.\\ 3,\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y-z}{5-6-7}=\dfrac{36}{-8}=-\dfrac{9}{2}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{45}{2}\\y=-27\\z=-\dfrac{63}{2}\end{matrix}\right.\\ 4,x:y:z=3:5:7\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x+3y-z}{6+15-7}=\dfrac{-14}{14}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-7\end{matrix}\right.\)
3. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y-z}{5-6-7}=\dfrac{36}{-8}=\dfrac{-9}{2}\)
\(x=\dfrac{-45}{2}\)
\(y=-27\)
\(z=\dfrac{-63}{2}\)
Giải phương trình:
a) \(\dfrac{3x-2}{x^2-12x+20}-\dfrac{4x+3}{x^2+6x-16}=\dfrac{7x+11}{x^2-2x-80}\)
b) \(\dfrac{2x-5}{x^2+5x-36}-\dfrac{x-6}{x^2+3x-28}=\dfrac{x+8}{x^2+16x+63}\)
a: \(\Leftrightarrow\dfrac{3x-2}{\left(x-2\right)\left(x-10\right)}-\dfrac{4x+3}{\left(x+8\right)\left(x-2\right)}=\dfrac{8x+11}{\left(x-10\right)\left(x+8\right)}\)
=>(3x-2)(x+8)-(4x+3)(x-10)=(8x+11)(x-2)
=>3x^2+24x-2x-16-4x^2+40x-3x+30=8x^2-16x+11x-22
=>-x^2+59x+14-8x^2+5x+22=0
=>-9x^2+54x+36=0
=>x^2-6x-4=0
=>\(x=3\pm\sqrt{13}\)
b: \(\Leftrightarrow\dfrac{2x-5}{\left(x+9\right)\left(x-4\right)}-\dfrac{x-6}{\left(x+7\right)\left(x-4\right)}=\dfrac{x+8}{\left(x+9\right)\left(x+7\right)}\)
=>(2x-5)(x+7)-(x-6)(x+9)=(x+8)(x-4)
=>2x^2+14x-5x-35-x^2-9x+6x+54=x^2+4x-32
=>x^2+6x+19=x^2+4x-32
=>2x=-51
=>x=-51/2
Tìm các số nguyên x,y biết:
a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
b) \(\dfrac{24}{7x-3}=\dfrac{-4}{25}\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
d) \(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
f) \(y\dfrac{5}{y}=\dfrac{86}{y}\) ( \(x\dfrac{2}{5};y\dfrac{5}{y}\) là các hỗn số)
a,\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
⇒\(\dfrac{6}{2x+1}=\dfrac{6}{21}\)
⇒\(2x+1=21\)
\(2x=21-1\)
\(2x=20\)
⇒\(x=10\)
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) c) \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) e) \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\)
a) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{7}{x}=16\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{7}{16}\\y=-\dfrac{42}{17}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{7}{16};-\dfrac{42}{17}\))}
b) Đk xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{13}{x}=6\\\dfrac{5}{x}+\dfrac{1}{y}=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{13}{6}\\y=\dfrac{13}{152}\end{matrix}\right.\)
Vậy S={(\(\dfrac{13}{6};\dfrac{13}{152}\))}
c) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{2}{y}=10\\\dfrac{2}{x}+\dfrac{7}{y}=21\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=-\dfrac{1}{7}\end{matrix}\right.\)
Vậy S={(\(-\dfrac{1}{7};\dfrac{1}{5}\))}
d) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{14}{x}=35\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)
Vậy S={(0,4;-4)}
e) ĐKXĐ : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-\dfrac{2}{y}=18\\\dfrac{3}{x}+\dfrac{5}{y}=10\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{1}{9}\\x=\dfrac{3}{55}\end{matrix}\right.\) 'Vậy....
\(\dfrac{x}{6}-\dfrac{1}{y}=\dfrac{1}{2}\) a.
\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\) b.
\(\dfrac{1}{4}\)+\(\dfrac{8}{9}\)≤\(\dfrac{x}{36}\)<1-(\(\dfrac{3}{8}\)-\(\dfrac{5}{6}\))
\(\dfrac{1}{4}+\dfrac{8}{9}\le\dfrac{x}{36}\le1-\left(\dfrac{3}{8}-\dfrac{5}{6}\right)\\ \Rightarrow\dfrac{41}{36}\le\dfrac{x}{36}\le\dfrac{35}{24}\\ \Rightarrow\dfrac{82}{72}\le\dfrac{2x}{72}\le\dfrac{105}{72}\\ \Rightarrow41\le x< 51,5\)