Những câu hỏi liên quan
BS
Xem chi tiết

Chu vi của tam giác PRQ là:

5+4+3=12(cm)

Mà theo đề bài thì tam giác PRQ=tam giác DEF

=>chu vi của tam giác DEF là 12cm

Bình luận (0)
 Khách vãng lai đã xóa
HD
5 tháng 2 2020 lúc 20:16

=12cm                     

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
MP
8 tháng 9 2023 lúc 21:08

loading...

Bình luận (0)
NT
21 tháng 7 2023 lúc 21:26

a: EK^2=EF^2+FK^2

=>ΔEFK vuông tại F

b: PQ^2<>QR^2+PR^2

=>ΔPRQ ko vuông

c: EF^2=DE^2+DF^2

=>ΔDEF vuông tại D

Bình luận (0)
LP
Xem chi tiết
NT
11 tháng 12 2023 lúc 20:16

Sửa đề: MK\(\perp\)PQ; MN\(\perp\)PR

a: ta có: ΔPQR vuông tại P

=>\(QR^2=PQ^2+PR^2\)

=>\(QR^2=8^2+6^2=100\)

=>\(QR=\sqrt{100}=10\left(cm\right)\)

Ta có: ΔRPQ vuông tại P

mà PM là đường trung tuyến

nên \(PM=\dfrac{RQ}{2}=5\left(cm\right)\)

b: Xét tứ giác PNMK có

\(\widehat{PNM}=\widehat{PKM}=\widehat{NPK}=90^0\)

=>PNMK là hình chữ nhật

c: Xét ΔRPQ có

M là trung điểm của RQ

MK//RP

Do đó: K là trung điểm của PQ

=>PK=KQ(1)

Ta có: PKMN là hình chữ nhật

=>PK=MN(2)

Từ (1) và (2) suy ra KQ=MN

Ta có: PK//MN
K\(\in\)PQ

Do đó: NM//KQ

Xét tứ giác KQMN có

KQ//MN

KQ=MN

Do đó: KQMN là hình bình hành

=>QN cắt MK tại trung điểm của mỗi đường

mà O là trung điểm của MK

nên O là trung điểm của QN

=>OQ=ON

Xét tứ giác PMQH có

K là trung điểm chung của PQ và MN

=>PMQH là hình bình hành

Hình bình hành PMQH có PQ\(\perp\)MH

nên PMQH là hình thoi

Bình luận (0)
NV
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
LN
5 tháng 5 2020 lúc 21:24

Ta có Tam giác PQR cân tại P vì PQ=PR

Kẻ đường cao PH của Tam giác PQR ta có 

Vì Tam giác PQR cân tại P => H là trung điểm RQ => HR=HQ=1/2.RQ=1/2.6=3(cm)

Tam giác PRH vuông tại H, Áp dụng ĐL Pytago có

\(PR^2=RH^2+PH^2\)

\(5^2=3^2+PH^2\)=> PH=4cm

Xét Tam giác PMH vuông tại H, áp dụng PYtago ta có 

\(PM^2=PH^2+MH^2\)

\(4.5^2=4^2+MH^2\)

=> MH=\(\sqrt{4.5^2-4^2}\)

Nếu M thuộc đoạn RH (TM)

Nếu M thuộc đoạn QH (TM)

Vậy có 2 đuiểm M thảo mãn yêu cầu 

(P/s) có thể Ah trình bày ko đúng lém đâu hen 

_Kudo_

Bình luận (0)
 Khách vãng lai đã xóa
MN
Xem chi tiết
SK
17 tháng 4 2022 lúc 19:23

1A

2D

Bình luận (0)
H24
17 tháng 4 2022 lúc 19:24

A D

Bình luận (0)
BC
17 tháng 4 2022 lúc 19:26

1.A

2.D

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 4 2019 lúc 3:40

* Vẽ hình:

- Vẽ tam giác PQR có PQ = PR = 5cm, QR = 6cm.

+ Vẽ đoạn thẳng QR = 6cm.

+ Vẽ cung tròn tâm Q và cung tròn tâm R bán kính 5cm. Hai cung tròn này cắt nhau tại P.

+ Nối PQ và PR ta được tam giác cần vẽ.

- Vẽ điểm M : Vẽ cung tròn tâm P bán kính 4,5cm cắt QR (nếu có) tại M.

Giải bài 14 trang 60 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vậy ta có thể vẽ được 2 điểm M trên đường thẳng QR để PM = 4.5cm

* Kẻ đường cao PH của ΔPQR

Giải bài 14 trang 60 SGK Toán 7 Tập 2 | Giải toán lớp 7

Xét hai tam giác vuông tại H: ΔPHQ và ΔPHR có

PH chung

PQ = PR ( = 5cm)

⇒ ΔPHQ = ΔPHR (cạnh huyền – cạnh góc vuông)

⇒ HQ = HR (Hai cạnh tương ứng)

Mà HQ + HR = QR = 6 cm

Giải bài 14 trang 60 SGK Toán 7 Tập 2 | Giải toán lớp 7

+ ΔPHR vuông tại H có PR2= PH2+ HR2(định lí Py – ta – go)

⇒ PH2= PR2– HR2= 52– 32= 16 ⇒ PH = 4cm .

Đường vuông góc PH = 4cm là đường ngắn nhất trong các đường kẻ P đến đường thẳng QR.

Vậy chắc chắn có đường xiên PM = 4,5cm (vì PM = 4,5cm > 4cm) kẻ từ P đến đường thẳng QR.

+ Lại có : HM, HR lần lượt là hình chiếu của các đường xiên PM, PR trên đường thẳng QR.

Mà PM < PR ⇒ HM < HR = HQ (đường xiên nào lớn hơn thì hình chiếu lớn hơn).

⇒ M nằm giữa H và Q hoặc H và R

⇒ M nằm trên cạnh QP và có hai điểm M như vậy.

Giải bài 14 trang 60 SGK Toán 7 Tập 2 | Giải toán lớp 7

 

Bình luận (0)
DL
Xem chi tiết
PT
10 tháng 1 2022 lúc 7:57

A

Bình luận (2)