Cho phân số A= 4n+19/2n+3. tìm n thuộc Z để A có giá trị lớn nhất
cho phân số A= 4n+19/2n+3. tìm n thuộc Z để A là giá trị lớn nhất
ban hoc lop may vay
Bài 3: Cho phân số B= 4n +1/ 2n-3 , n thuộc Z
a) Tìm n để B là phân số tối giản.
b) Tìm n để B đạt giá trị nhỏ nhất, giá trị lớn nhất và tính các giá trị đó.
Mọi người giúp e với ạ rm đng cần gấp ạ
Cho A = \(\frac{4n+1}{2n+3}\). Tìm n thuộc Z để:
a) A là phân số.
b) A có giá trị là một số nguyên.
c) A có giá giá trị lớn nhất. A có giá trị nhỏ nhất
Cho phân số B = \(\frac{4n+1}{2n-3}\), n thuộc Z
a, Tìm n để B là p/s tối giản
b, Tìm n để B đạt giá trị nhỏ nhất, giá trị lớn nhất và tính các giá trị đó
a, \(\frac{4n+1}{2n-3}=\frac{2n-3+2n+4}{2x-3}\)
= \(\frac{2n-3}{2n-3}+\frac{2n+4}{2n-3}\) = \(1+\frac{2n-3+7}{2n-3}=1+\frac{7}{2n-3}\)
để B tối giản thì 7 phải chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
=> 2n - 3 = { 1 , -1 , 7 , -7 }
=> 2n = { 4 , 2 , 10 , -4 }
=> n ={ 2 , 1 ,5 ,-2 }
Đừng bỏ cuộc
b, để \(\frac{4n+1}{2n-3}\) lớn nhất
=> 2n - 3 phải nhỏ nhất
mà 2n - 3 phải >0 và khác 0 ( là mẫu số )
=> 2n -3 = 1
=> 2n = 4
n = 2
(ᴾᴿᴼシPickaミ★ácミ ★Quỷ★彡)
Ừ câu a)
Để B tối giản thì 7 phải không chia hết cho 2n - 3
=> n khác {2; -2; 5; 1}
Cho phân số : A = \(\frac{2n+1}{n-2}\)
a) Tìm n thuộc Z để A có giá trị nguyên .
b) Tìm n thuộc Z để A có giá trị lớn nhất .
c) Tìm n thuộc Z để A có giá trị nhỏ nhất .
d) Tìm n thuộc Z để A có giá trị âm .
Cho phân số B= 3-4n/2n+1 (n thuộc Z)
Tìm giá trị lớn nhất của B
Cho phân số B= 3-4n/2n+1 (n thuộc Z)
Tìm giá trị lớn nhất của B
Cho phân số B= 3-4n/2n+1 (n thuộc Z)
Tìm giá trị lớn nhất của B
Lời giải:
$B=\frac{3-4n}{2n+1}=\frac{5-2(2n+1)}{2n+1}=\frac{5}{2n+1}-2$
Để $B$ lớn nhất thì $\frac{5}{2n+1}$ lớn nhất
Điều này xảy ra khi $2n+1$ là số dương nhỏ nhất.
Với $n\in\mathbb{Z}$, $2n+1$ đạt giá trị dương nhỏ nhất bằng $1$
$\Rightarrow B_{\max}=\frac{5}{1}-2=3$