Những câu hỏi liên quan
NH
Xem chi tiết
EM
3 tháng 4 2016 lúc 13:18

a) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{2006\cdot2007}\)

=>              \(<\frac{1}{4}-\frac{1}{2007}<\frac{1}{4}\)

\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}<\frac{1}{4}\)

b) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{2007\cdot2008}\)

=>    \(>\frac{1}{5}-\frac{1}{2008}>\frac{1}{5}\)

\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)

Bình luận (0)
NH
3 tháng 4 2016 lúc 13:29

cảm ơn bạn nha

Bình luận (0)
MM
Xem chi tiết
PT
Xem chi tiết
PD
Xem chi tiết
DM
1 tháng 8 2015 lúc 17:05

1/5^2+1/6^2+...+1/2007^2<1/4.6+1/5.7+...+1/2006.2008

=1/2(1/4-1/6+...+1/2006-1/2008)

=1/2.1/4-1/4016

=1/8-1/4016<50/251 (Vì 1/8<50/251)

Bình luận (0)
KM
17 tháng 3 2016 lúc 1:17

Bất đẳng thức của bạn sai dấu, để kiểm tra, bạn bấm máy tính tổng sigma của chuỗi 1/i2 với i chạy từ 5 đến 100, kết quả là 0,211...> 50/251.

Bài giải của bạn Đào Đức Mạnh sai ở dòng thứ 3: "=1/2.1/4 - 1/4016", thay vào đó phải sửa là "= (1/2).(1/4 + 1/5 - 1/2007 - 1/2008). Bạn có thể khai triển cụ thể hơn theo hướng giải ban đầu của bạn Mạnh để thấy 1/5 và -1/2007 ko bị triệt tiêu. Vì đpcm đã sai ngay từ đầu nên mình ko làm tiếp cách này.

Mình sẽ chứng minh điều ngược lại: VT > 50/251

VT = 1/5+ 1/6.6 + 1/7.7 +.....+1/2007.2007 > 1/52 + 1/6.7 +1/7.8 + .... +1/2007.2008 = 1/52 + 1/6 - 1/7 +1/7 - 1/8 + .... -1/2007 + 1/2007 - 1/2008 = 1/52 + 1/6 - 1/2008 =1/25 +4/25 - 4/25 + 1/6 -1/2008 = 1/5 +1/150 - 1/2008 >1/5 = 50/250 >50/251 (do 1/150 - 1/2008 >0).

Mình  nghĩ đây ko phải cách giải tốt nhất. Mong nhận được hướng giải quyết thông minh hơn từ các bạn! Thanks in advance!

Bình luận (0)
MM
Xem chi tiết
H24
20 tháng 7 2019 lúc 14:31

\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{2006.2007}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2006}-\frac{1}{2007}=\frac{1}{4}-\frac{1}{2007}< \frac{1}{4}\)

Bình luận (0)
PH
Xem chi tiết
TN
2 tháng 8 2017 lúc 12:30

Đặt :

\(A=\frac{1}{5^2}+\frac{1}{6^2}+.........+\frac{1}{2007^2}\)

Ta thấy :

\(\frac{1}{5^2}>\frac{1}{5.6}\)

\(\frac{1}{6^2}>\frac{1}{6.7}\)

...........................

\(\frac{1}{2007^2}>\frac{1}{2007.2008}\)

\(\Leftrightarrow A>\frac{1}{5.6}+\frac{1}{6.7}+........+\frac{1}{2007.2008}\)

\(\Leftrightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+......+\frac{1}{2007}-\frac{1}{2008}\)

\(\Leftrightarrow A>\frac{1}{5}-\frac{1}{2008}>\frac{1}{5}\)

\(\Leftrightarrow A>\frac{1}{5}\)

Bình luận (0)
PD
Xem chi tiết
PD
4 tháng 12 2019 lúc 15:41

Nhanh lên nhé

Bình luận (0)
 Khách vãng lai đã xóa
PD
4 tháng 12 2019 lúc 15:51

Giups mnihf đi

Bình luận (0)
 Khách vãng lai đã xóa
TC
4 tháng 12 2019 lúc 16:19

Mk làm câu a thôi nhé :)

Vì \(\frac{1}{5^2}< \frac{1}{4.5}\)

     \(\frac{1}{6^2}< \frac{1}{5.6}\)

       ...

       \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(=>\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(< \)\(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

                                                                          \(=\frac{1}{4}-\frac{1}{100}\)(1)

Vì \(\frac{1}{5^2}>\frac{1}{5.6}\)

     \(\frac{1}{6^2}>\frac{1}{6.7}\)

       ...

       \(\frac{1}{100^2}>\frac{1}{100.101}\)

\(=>\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{100}-\frac{1}{101}\)

                                                                   \(=\frac{1}{5}-\frac{1}{101}\)(2)

Từ (1) và (2) => ĐPCM

Bình luận (0)
 Khách vãng lai đã xóa
VD
Xem chi tiết
TH
Xem chi tiết
DH
17 tháng 12 2019 lúc 9:11

Violympic toán 7

Bình luận (0)
 Khách vãng lai đã xóa