Cho mình hỏi sao Tuyết Mai có thể k đúng hai cái thế nhỉ ?
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho mình hỏi sao Tuyết Mai có thể k đúng hai cái thế nhỉ ?
Chứng minh rằng:
a) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4}\)
b)\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)
Chứng minh rằng: \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}.\)
Mình cần gấp lắm! Help me!
Chứng minh : $\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{^{2007^2}}>\frac{1}{5}$
Chứng minh rằng: \(\frac{1}{5}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}< \frac{1}{4}\)
Chứng minh : \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{^{2007^2}}<\frac{50}{251}\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
Chứng minh rằng : B<1
Bài 1: Chứng minh rằng:
1)\(\frac{1}{5}< A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}\)
2)\(B=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}>\frac{65}{132}\)
3)\(C=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)
4)\(\frac{1}{6}< D=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
5)\(E=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Bài 2 : Cho \(D=\frac{12}{\left(2\cdot4\right)^2}+\frac{20}{\left(4\cdot6\right)^2}+...+\frac{388}{\left(96\cdot98\right)^2}+\frac{396}{\left(98\cdot100\right)^2}\)
Hãy so sánh\(D\) với \(\frac{1}{4}\)
Cảm ơn các bạn nhiều!
Chứng minh: \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)
Cho \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
Chứng minh rằng 1/6 < A < 1/4