Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
C2
Xem chi tiết
LH
27 tháng 12 2019 lúc 19:17

cc yêu cl

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
HT
Xem chi tiết
MS
Xem chi tiết
DV
28 tháng 6 2015 lúc 19:34

/b = c/d           => a/c = b/d 

=> a2 / c2 = b2 / d2  = ab / cd

<=> 7a/ 7c2 = 11a2 / 11c = 8b2 / 8d2 = 3ab / 3cd

=> 7a2 + 3ab / 7c+ 3cd = 11a2 - 8b2 / 11c2 - 8d2

=> 7a2 + 3ab / 11a2 - 8b= 7c+ 3cd / 11c2 - 8d2              

=>  (đpcm)

Bình luận (0)
NB
Xem chi tiết
MS
Xem chi tiết
H24
31 tháng 8 2019 lúc 9:07

#)Giải :

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\Leftrightarrow\frac{7a^2}{7c^2}=\frac{11a^2}{11c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}\)

\(\Leftrightarrow\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11a^2-8d^2}\Leftrightarrow\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)

Bình luận (0)
H24
31 tháng 8 2019 lúc 9:13

#)Giải : (Cách 2)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7b^2k^2+3b^2k}{11b^2k^2-8d^2}=\frac{b^2\left(7k^2-3k\right)}{b^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\\\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\frac{d^2\left(7k^2-3k\right)}{d^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\end{cases}}}\)

=> đpcm

Bình luận (0)
CD
Xem chi tiết
NT
29 tháng 8 2022 lúc 8:49

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3\cdot bk\cdot b}{11\cdot b^2k^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3\cdot dk\cdot d}{11d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)

Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

Bình luận (0)
QT
Xem chi tiết
NT
3 tháng 1 2021 lúc 13:55

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

nên \(\dfrac{5a}{3b}=\dfrac{5c}{3d}\)

hay \(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(\Leftrightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

hay \(\dfrac{5a+3n}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)

 

Bình luận (0)
H24
3 tháng 1 2021 lúc 13:57

undefined

Bình luận (0)
H24
Xem chi tiết