CMR: nếu a/b=c/d thì 7a^2 + 3ad / 11a^2-8b^2 = 7c^2 + 3cd / 11c^2-8d^2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CMR nếu a/b=c/d thì\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
cho a/b = c/d . cmr 7a mũ 2 + 3cd / 11a mũ 2 - 8b mũ 2 = 7c mũ 2 + 3cd / 11c mũ 2 - 8d mũ 2
cho a/b = c/d . cmr 7a mũ 2 + 3cd / 11a mũ 2 - 8b mũ 2 = 7c mũ 2 + 3cd / 11c mũ 2 - 8d mũ 2
CMR nếu a/c =b/d thì:
\(\frac{7a^2+3ab}{11a^2+8b^2}=\frac{7c^2+3cd}{11c^2+8d^2}\)
/b = c/d => a/c = b/d
=> a2 / c2 = b2 / d2 = ab / cd
<=> 7a2 / 7c2 = 11a2 / 11c2 = 8b2 / 8d2 = 3ab / 3cd
=> 7a2 + 3ab / 7c2 + 3cd = 11a2 - 8b2 / 11c2 - 8d2
=> 7a2 + 3ab / 11a2 - 8b2 = 7c2 + 3cd / 11c2 - 8d2
=> (đpcm)
CMR:nếu a/b=c/d thì a)5a+3b/5a-3b ; b)7a^2+3ab/11a^2-8b^2=7c^2+3cd/11c^2-8d^2
C/m : nếu a/b = c/d thì
\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
#)Giải :
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\Leftrightarrow\frac{7a^2}{7c^2}=\frac{11a^2}{11c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}\)
\(\Leftrightarrow\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11a^2-8d^2}\Leftrightarrow\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)
#)Giải : (Cách 2)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7b^2k^2+3b^2k}{11b^2k^2-8d^2}=\frac{b^2\left(7k^2-3k\right)}{b^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\\\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\frac{d^2\left(7k^2-3k\right)}{d^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\end{cases}}}\)
=> đpcm
cho a/b=c/d chứng minh 7a^2+3ab/11a^2-8b^2=7c^2+3cd/11c^2-8d^2
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3\cdot bk\cdot b}{11\cdot b^2k^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3\cdot dk\cdot d}{11d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
chứng minh rằng nếu \(\dfrac{a}{b}=\dfrac{c}{d}\)thì\(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
thì\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{5a}{3b}=\dfrac{5c}{3d}\)
hay \(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(\Leftrightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
hay \(\dfrac{5a+3n}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)
Cho \(\frac{a}{b}=\frac{c}{d}.CMR:\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)