Những câu hỏi liên quan
NH
Xem chi tiết
NT
1 tháng 4 2022 lúc 7:00

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)

=>x-2014=0

hay x=2014

Bình luận (0)
LH
Xem chi tiết
YN
2 tháng 3 2022 lúc 21:34

`Answer:`

\(\left(\frac{x+1}{2013}\right)+\left(\frac{x+2}{2012}\right)+\left(\frac{x+3}{2011}\right)=\left(\frac{x+4}{2010}\right)+\left(\frac{x+5}{2009}\right)+\left(\frac{x+6}{2008}\right)\)

\(\Leftrightarrow\frac{x+1}{2013}+1+\frac{x+2}{2012}+1+\frac{x+3}{2011}+1=\frac{x+4}{2010}+1+\frac{x+5}{2009}+1+\frac{x+6}{2008}+1\)

\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}=\frac{x+2014}{2010}+\frac{x+2014}{2009}+\frac{x+2014}{2008}\)

\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}-\frac{x+2014}{2010}-\frac{x+2014}{2009}-\frac{x+2014}{2008}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

\(\Rightarrow x+2014=0\)

\(\Leftrightarrow x=-2014\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TL
28 tháng 3 2021 lúc 15:26

`(x-1)/2013+(x-2)/2012+(x-3)/2011=(x-4)/2010+(x-5)/2009 +(x-6)/2008`

`<=> ((x-1)/2013-1)+((x-2)/2012-1)+((x-3)/2011-1)=( (x-4)/2010-1)+((x-5)/2009-1)+((x-6)/2008-1)`

`<=> (x-2014)/2013 +(x-2014)/2012+(x-2014)/2011=(x-2014)/2010+(x-2014)/2009+(x-2014)/2008`

`<=> x-2014=0` (Vì `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`)

`<=>x=2014`

Vậy `S={2014}`.

Bình luận (0)
BT
Xem chi tiết
NT
23 tháng 1 2022 lúc 21:37

=>x-2014=0

hay x=2014

Bình luận (1)
NT
23 tháng 1 2022 lúc 21:41

\(\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2019}-1+\dfrac{x-5}{2010}-1+\dfrac{x-6}{2008}-1\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\ne0\right)=0\Leftrightarrow x=2014\)

Bình luận (0)
LG
Xem chi tiết
NV
17 tháng 3 2023 lúc 22:25

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\left(\dfrac{x-1}{2013}-1\right)+\left(\dfrac{x-2}{2012}-1\right)+\left(\dfrac{x-3}{2011}-1\right)=\left(\dfrac{x-4}{2010}-1\right)+\left(\dfrac{x-5}{2009}-1\right)+\left(\dfrac{x-6}{2008}-1\right)\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}=\dfrac{x-2014}{2010}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2008}\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)

\(\Leftrightarrow\left(x-2014\right).A=0\)

\(\text{Vì A }\ne0\)

\(\Rightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

\(\text{Vậy phương trình có tập nghiệm là }S=\left\{2014\right\}\)

 

Bình luận (0)
TV
Xem chi tiết
KS
14 tháng 3 2019 lúc 16:50

\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)

\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

tự làm nốt~

Bình luận (0)
NN
14 tháng 3 2019 lúc 17:17

kudo shinichi làm sai ở chỗ:

\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé

Bình luận (0)
KS
14 tháng 3 2019 lúc 17:33

Ngọc Nguyễn: uk. mình gõ nhầm

Bình luận (0)
LT
Xem chi tiết
BB
6 tháng 3 2017 lúc 21:49

Bài của bạn nè bạn gái!

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{1012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)

\(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{10}{2008}\ne0\)

\(\Rightarrow x-2014=0\Rightarrow x=2014\)

vậy x=2014

Bình luận (2)
TL
6 tháng 3 2017 lúc 21:00

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\dfrac{x-1}{2013}+1+\dfrac{x-2}{2012}+1+\dfrac{x-3}{2011}+1-\dfrac{x-4}{2010}+1-\dfrac{x-5}{2009}+1-\dfrac{x-6}{2008}+1=0\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\ne0\right)=0\)

\(\Leftrightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

Vậy PT có nghiệm là \(x=2014\)

Bình luận (2)
LC
6 tháng 3 2017 lúc 21:23

Trừ 1 vào mỗi phân thức ở vế trái, tương tự với vế phải sẽ xuất hiện tử thức chung x-2014 rồi đặt nó làm nhân tử chung => x=2014

Bình luận (1)
TN
Xem chi tiết
PN
11 tháng 2 2020 lúc 17:42
https://i.imgur.com/KDgoiE0.jpg
Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
LU
14 tháng 3 2017 lúc 19:27

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(=>\dfrac{x+4}{2010}+1\))+(\(\dfrac{x+3}{2011}+1\))=\(\left(\dfrac{x+2}{2012}+1\right)\)+\(\left(\dfrac{x+1}{2013}+1\right)\)

=>\(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)

=>x+2014(\(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\))=0

ta thấy \(\dfrac{1}{2010}>\dfrac{1}{2011}>\dfrac{1}{2012}>\dfrac{1}{2013}\)

=>\(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}>0\)

để A=0

\(\Leftrightarrow x+2014=0\)

\(\Leftrightarrow\)x=-2014

Bình luận (0)
NT
14 tháng 3 2017 lúc 19:09

a)\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(\Rightarrow\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)

\(\Rightarrow\left(x+2014\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\)\(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\ne0\)

\(\Rightarrow x+2014=0\)

\(\Rightarrow x=-2014\)

Bình luận (0)
HK
14 tháng 3 2017 lúc 19:12

tìm x biết :

a)(x+4) / 2010 + (x+3)/2011 =( x+2)/2012 + (x+1)/2013

==> [(x+4)/2010 + 1] + [(x+3)/2011 + 1] =[( x+2)/2012 + 1] + [(x+1)/2013 + 1].

==> (x + 2014)/2010 + (x+2014)/2011 = (x+2014)/2012 + (x+2014)/2013.

==> (x+2014)/2010 + (x+2014)/2011 - (x+2014)/2012 - (x+2014)/2013 = 0

==> (x+2014).(1/2010 + 1/2011 - 1/2012 - 1/2013) = 0

Vì : 1/2010 + 1/2011 - 1/2012 - 1/2013 khác 0

==> x + 2014 = 0

==> x = - 2014

Vậy x = - 2014.

Chúc pạn hok tốt!!!

Bình luận (2)