Giair phương trình :
x4 - 30x2 + 31x - 30 = 0
x4-30x2+31x-30
x4-30x2+31x-30 =0
<=> x4- x - 30x2+30x - 30 =0
<=> x ( x3- 1) - 30 (x2 - x + 1) =0
<=> x ( x-1) ( x2 - x + 1) - 30 (x2 - x + 1) =0
<=>(x ( x-1) - 30) ( x2 - x + 1) =0
<=>(x2 -x -30) ( x2 - x + 1) =0
<=>( x2 - x + 1) ( x2 - 5x + 6x - 30) =0
<=> ( x2 - x + 1) ( x(x-5) + 6 ( x-5)) =0
<=> ( x2 - x + 1) (x-5) (x+6) =0
Vì ( x2 - x + 1) > 0 với mọi x (bình phương thiếu)
=> (x-5) (x+6) =0
<=> x-5 = 0 hoặc x+ 6 = 0
<=> x=5 hoặc x = -6
Giup mik với :
C1/.x4+2x3-4x-4 C2/ x(x+2y)3-y(2x+y)3 C3/. x4- 30x2+31x-30 C4/. 60x+18x2- 6x3 C5/. x4+6x+8 C6/. x4- 5x2+x3 -5x
Bài 1: Tính giá trị của biểu thức.
a. A = x3-30x2-31x + 1 tại x = 31
b. B = x5-15x4+ 16x3-29x2+ 13x tại x = 14
c. C = x4 - 17x3 + 17x2 - 17x + 20 tại x = 16
d. D = x10 - 13x9 + 13x8 - 13x7 +...+ 13x2 - 13x + 10 tại x = 12
a: Ta có: x=31
nên x-1=30
Ta có: \(A=x^3-30x^2-31x+1\)
\(=x^3-x^2\left(x-1\right)-x^2+1\)
\(=x^3-x^3+x^2-x^2+1\)
=1
c: Ta có: x=16
nên x+1=17
Ta có: \(C=x^4-17x^3+17x^2-17x+20\)
\(=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+20\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+20\)
\(=20-x=4\)
d: Ta có: x=12
nên x+1=13
Ta có: \(D=x^{10}-13x^9+13x^8-13x^7+...+13x^2-13x+10\)
\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...+x^2\left(x+1\right)-x\left(x+1\right)+10\)
\(=10-x\)
=-2
Bài 1: Tính giá trị của biểu thức.
a. A = x3-30x2-31x + 1 tại x = 31
b. B = x5-15x4+ 16x3-29x2+ 13x tại x = 14
c. C = x4 - 17x3 + 17x2 - 17x + 20 tại x = 16
d. D = x10 - 13x9 + 13x8 - 13x7 +...+ 13x2 - 13x + 10 tại x = 12
d: Ta có: x=12
nên x+1=13
Ta có: \(D=x^{10}-13x^9+13x^8-13x^7+...+13x^2-13x+10\)
\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...+x^2\left(x+1\right)-x\left(x+1\right)+10\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+1+9\)
\(=-x+10=-2\)
GIẢI PHƯƠNG TRÌNH: x^4-30x^2+31x-30=0
x^4-5x^3+5x^3-25x^2-5x^2+25x+6x-30=0
(x-5)(x^3+5x^2-5x+6)=0
(x-5)(x^3+6x^2-x^2-6x+x+6)=0
(x-5)(x+6)(x^2-x+1)=0
Suy ra x-5=0 hay x+6=0 hay x^2-x+1=0
Suy ra x=5 hay x=-6 hay x^2+2x.1/2+1/4+3/4=0
Suy ra x=5 hay x=-6 hay (x+1/2)^2=3/4=0 (vô lý)
Vậy x=5 hay x=-6
giải phương trình: x^4-30x^2+31x-30=0
Giai phương trình: x4-30x2 +31x-30=0
\(x^4-30x^2+31x-30=0\)
\(\Leftrightarrow x^4+x-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-5\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+6=0\\x-5=0\\x^2-x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-6\\x=5\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\left(loai\right)\end{array}\right.\)
Vậy \(S=\left\{-6;5\right\}\)
giải phương trình x4-30x2+31x-30=0
pt <=> (x^4+x)-(30x^2-30x+30) = 0
<=> x.(x^3+1)-30.(x^2-x+1) = 0
<=> x.(x+1).(x^2-x+1)-30.(x^2-x+1) = 0
<=> (x^2-x+1).(x^2+x-30) = 0
<=> x^2+x-30 = 0 ( vì x^2-x+1 > 0 )
<=> (x^2-5x)+(6x-30) = 0
<=> (x-5).(x+6) = 0
<=> x-5=0 hoặc x+6=0
<=> x=5 hoặc x=-6
Vậy ..............
Tk mk nha
Giải phương trình : \(x^4-30x^2+31x-30=0\)
x4-30x2+31x-30=0
x4+x) -30x2+30x-30=0
x{x3+1} -30{ x2-x+1}=0
x{x+1}{x2-x+1}-30{x2-x+1}=0
{x2-x+1}{x2+x-30}=0
x2+x-30=0 {vi x2-x+1>0}
x2+x-30x-30=0
{x+1}{x-30}=0
x=-1x=30