Rút gọn đa thức: \(R=\text{-}x^4+x^3+3x^2+x\text{-}\frac{1}{2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Ai giải giúp mấy bài toán vs
Bài 1:
A=\(\sqrt{\frac{1}{\text{√}2+1}-\frac{\text{√}8-\text{√}10}{2-\text{√}5}}\)
B=\(\frac{5\text{√}5}{\text{√}5+2}+\frac{\text{√}5}{\text{√}5-1}-\frac{3\text{√}5}{3+\text{√}5}\)
Bài 2 rút gọn biểu thức
A=\(\left(\frac{x+\sqrt[]{xy}}{\text{√}x+\text{√}y}-2\right):\frac{1}{\text{√}x+2}\) với x :y >0
B=\(\left(\frac{a}{a-2\text{√}a}+\frac{a}{\text{√}a-2}\right):\frac{\text{√}a+1}{a-4\text{√}a+4}\)
Bài 3 cho biểu thức
P=\(\left(\frac{x-2}{x+2\text{√}x}+\frac{1}{\text{√}x+2}\right)\frac{\text{√}x+1}{\text{√}x-1}\)
a)Rút gọn P
b)tìm x để P=\(\text{√}x+\frac{5}{2}\)
bài 4 rút gọn biểu thức
A=\(\frac{1}{x+\text{√}x}+\frac{2\text{√}x}{x-1}-\frac{1}{x-\text{√}x}\)
B=\(\left(\frac{x}{x+3\text{√}x}+\frac{1}{\text{√}x+3}\right):\left(1-\frac{2}{\text{√}x}+\frac{6}{x+3\text{√}x}\right)\)
Bài 5
A=\(\left(\frac{2}{\text{√}x-3}-\frac{1}{\text{√}x+3}-\frac{x}{\text{√}x\left(x-9\right)}\right):\text{(√}x+3-\frac{x}{\text{√}x-3}\)
a)rút gọn A
b)tìm gtri x để A= -1/4
AI GIẢI GIÙM MÌNH ĐI MÌNH TẠ ƠN
1 a..Rút gọn biểu thức A = \(\dfrac{\text{ x 2 − 4 x + 4}}{\text{x 3 − 2 x 2 − ( 4 x − 8 ) }}\)
b. Rút gọn biểu thức B = \(\left(\dfrac{x+2}{\text{x }\sqrt{\text{x }}+1}-\dfrac{1}{\sqrt{\text{x}}+1}\right).\dfrac{\text{4 }\sqrt{x}}{3}\)
a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
Cho biểu thức: \(P=\frac{3x^2-x}{3x+2}:\frac{3x^3-x^2+12x-4}{x+2\left(x+1\right)}\)
\(\text{a) Rút gọn P}\)
\(\text{b) Tìm GTNN và GTLN của P}\)
dk 3x+2
P= \(\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)x^2+4\left(3x-1\right)}=\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)\left(x^2+4\right)}=\)\(\frac{x}{x^2+4}\)
dk \(\hept{\begin{cases}3x-1\ne0\\3x+2\ne0\end{cases}< =>\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne\frac{-2}{3}\end{cases}}}\)(1)
P(x2+4) = x <=> Px2-x+4P=0
để phương trình trên có nghiệm thỏa mãn (1) <=> \(\hept{\begin{cases}P\frac{1}{3^2}-\frac{1}{3}+4P\ne0\\P\frac{4}{9}+\frac{2}{3}+4P\ne0\\1^2-4.P.\left(4P\right)\ge0\end{cases}< =>\hept{\begin{cases}P\ne\frac{3}{37}\\P\ne\frac{-3}{20}\\\frac{-1}{4}\le P\le\frac{1}{4}\end{cases}}}\)
Vậy P max = 1/4 khi \(\frac{1}{4}x^2-x+1=0< =>x=2\)
P min = -1/4 khi \(\frac{-1}{4}x^2-x-1=0< =>x=-2\)
cho biểu thức
P=(\(\dfrac{\text{x^3+3x}}{\text{x^3+3x^2+9x+27}}\)+\(\dfrac{\text{3}}{\text{x^2+9}}\)):(\(\dfrac{\text{1}}{\text{x-3}}\)-\(\dfrac{\text{6x}}{\text{x^3-3x^2+9x-27}}\))
rút gọn p
với x>0 thì P không nhận gt nào
Tìm cácgt của x để P nguyên
ĐKXĐ: \(x\ne\pm3\)
\(P=\left[\dfrac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)
\(=\left[\dfrac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)
\(=\dfrac{x+3}{x^2+9}:\dfrac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}=\dfrac{x+3}{x^2+9}.\dfrac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)
Ý 2 mình k hiểu ý bạn lắm
\(P=\dfrac{x+3}{x-3}=\dfrac{x-3+6}{x-3}=1+\dfrac{6}{x-3}\in Z\)
\(\Leftrightarrow\left(x-3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Kết hợp vs ĐKXĐ \(\Rightarrow x\in\left\{0;1;2;4;5;6;9\right\}\)
Cho biểu thức
A=\(\orbr{ }\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\text{] }\div\orbr{ }x-2+\frac{10-x^2}{x+2}\text{] }\)
a. Rút gọn A
b. Tìm giá trị của x để A có giá trị nguyên
\(A=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left[x-2+\frac{10-x^2}{x+2}\right]\) ĐKXĐ : \(x\ne0;x\ne\pm2\)
\(A=\left[\frac{x^2}{x\left(x+2\right)\left(x-2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\left[\frac{x^2-4}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(A=\left[\frac{3x^2}{3x\left(x+2\right)\left(x-2\right)}-\frac{6x\left(x+2\right)}{3x\left(x+2\right)\left(x-2\right)}+\frac{3x\left(x+2\right)}{3x\left(x+2\right)\left(x-2\right)}\right]:\frac{6}{x+2}\)
\(A=\left[\frac{3x^2-6x^2-12x+3x^2+6x}{3x\left(x+2\right)\left(x-2\right)}\right].\frac{x+2}{6}\)
\(A=\frac{-x}{3x\left(x-2\right)}\)
\(A=\frac{-1}{3x-6}\)
1. Rút gọn biểu thức A = \(\dfrac{\text{√ x + 1}}{\text{√ x − 1 }}-\dfrac{\text{√ x − 1}}{\text{√ x + 1}}+\dfrac{\text{8 √ x}}{\text{1 − x }}\)
2. Rút gọn biểu thức B = \(\dfrac{\text{√ x − x − 3}}{\text{x − 1 }}-\dfrac{\text{1}}{\text{√ x − 1 }}\) với x ≥ 0, x ≠ 1
A=1- (\(\text{ }\frac{\text{2x^2 - 1+x}}{\text{1-x^2}}\text{+}\text{ }\frac{\text{2x^3 - x +x^2}}{\text{1+x^2}}\)) * \(\frac{\text{(((1-x)(x^2-x)}}{\text{2x - 1}}\)
Rút gọn A và Cm A < 4/3
rút gọn phân thức
\(\frac{2\text{x}^3-7\text{x}^2-12\text{x}+45}{3\text{x}^3-19\text{x}^2+33\text{x}-9}\)
Câu 3: Rút gọn phân thức : \(\dfrac{\text{x^5 + x^5 +1}}{\text{x^2 + x +1}}\)
a/ x3 –x2 +1 b/ x3+x-1 c/ x3 –x2 –x+1 d/ x3-x+1
Câu 4:Rút gọn :\(\dfrac{\text{a^2 - ab - ac + bc}}{\text{a2 + ab - ac - bc}}\)bằng mấy
Câu 4:
\(=\dfrac{a\left(a-b\right)-c\left(a-b\right)}{a\left(a+b\right)-c\left(a+b\right)}=\dfrac{a-b}{a+b}\)