Những câu hỏi liên quan
DV
Xem chi tiết
NT
Xem chi tiết
NC
2 tháng 1 2020 lúc 8:47

Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NP
Xem chi tiết
PD
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết
TT
Xem chi tiết
VC
25 tháng 9 2017 lúc 19:52

Áp dụng bất đẳng thức bu nhi a ta có \(\left(x^2+y^2+z^2\right)3\ge\left(x+y+z\right)^2\)

Áp dụng ta có 

\(Q^2\le3\left(\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}\right)\)

đặt \(M=\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}=\frac{a}{1+a+ab}+\frac{ab}{a+ab+abc}+\frac{abc}{ab+abc+â^2bc}\)

    \(=\frac{1}{a+ab+1}+\frac{a}{a+ab+1}+\frac{ab}{1+ab+1}=1\)

=> \(Q^2\le3\Rightarrow Q\le\sqrt{3}\)

mặt khác Áp dụng cô si ta có 

\(a+b+c\ge3\sqrt[3]{abc}=3\Rightarrow\sqrt{a+b+c}\ge\sqrt{3}\Rightarrow\sqrt{a+b+c}\ge Q\) (ĐPCM)

Bình luận (0)
NT
25 tháng 9 2017 lúc 19:53

ta có:

\(\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}=\frac{a}{abc+a+ab}+\frac{b}{1+b+bc}+\frac{bc}{b+bc+abc}\)

\(=\frac{1}{1+b+bc}+\frac{b}{1+b+bc}+\frac{bc}{1+b+bc}=1\)

ta có:

\(Q^2\le3\left(\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}\right)=3\)

\(\Rightarrow Q\le\sqrt{3}=\sqrt{3\sqrt[3]{abc}}\le\sqrt{a+b+c}\left(Q.E.D\right)\)

dấu = xảy ra khi a=b=c=1

Bình luận (0)
NN
Xem chi tiết
AN
21 tháng 9 2016 lúc 21:55

Ta có 1 + ab2 \(\ge\)\(2b\sqrt{a}\)

1 + bc2 \(\ge2c\sqrt{b}\)

1 + ca2 \(\ge2a\sqrt{c}\)

VT \(\ge\)\(2\left(\frac{b\sqrt{a}}{c^3}+\frac{c\sqrt{b}}{a^3}+\frac{a\sqrt{c}}{b^3}\right)\)

\(\ge2\frac{\left(\sqrt[4]{b^2a}+\sqrt[4]{c^2b}+\sqrt[4]{a^2c}\right)^2}{a^3+b^3+c^3}\)

\(\ge2\frac{\left(3\sqrt[12]{a^3b^3c^3}\right)^2}{a^3+b^3+c^3}\)

\(\ge\frac{18}{a^3+b^3+c^3}\)

Bình luận (0)