Những câu hỏi liên quan
NT
Xem chi tiết
VD
Xem chi tiết
BA
Xem chi tiết
TN
Xem chi tiết
AH
10 tháng 8 2018 lúc 23:35

Bài 4:

\(x^4y-x^4+2x^3-2x^2+2x-y=1\)

\(\Leftrightarrow y(x^4-1)-(x^4-2x^3+2x^2-2x+1)=0\)

\(\Leftrightarrow y(x^2+1)(x^2-1)-[x^2(x^2-2x+1)+(x^2-2x+1)]=0\)

\(\Leftrightarrow y(x^2+1)(x-1)(x+1)-(x-1)^2(x^2+1)=0\)

\(\Leftrightarrow (x^2+1)(x-1)[y(x+1)-(x-1)]=0\)

\(\Rightarrow \left[\begin{matrix} x-1=0(1)\\ y(x+1)-(x-1)=0(2)\end{matrix}\right.\)

Với $(1)$ ta thu được $x=1$, và mọi $ý$ nguyên.

Với $(2)$

\(y(x+1)=x-1\Rightarrow y=\frac{x-1}{x+1}\in\mathbb{Z}\)

\(\Rightarrow x-1\vdots x+1\)

\(\Rightarrow x+1-2\vdots x+1\Rightarrow 2\vdots x+1\)

\(\Rightarrow x+1\in\left\{\pm 1; \pm 2\right\}\Rightarrow x\in\left\{-2; 0; -3; 1\right\}\)

\(\Rightarrow y\left\{3;-1; 2; 0\right\}\)

Vậy \((x,y)=(-2,3); (0; -1); (-3; 2); (1; t)\) với $t$ nào đó nguyên.

Bình luận (0)
AH
10 tháng 8 2018 lúc 22:52

Bài 1:

\(x^2+y^2-8x+3y=-18\)

\(\Leftrightarrow x^2+y^2-8x+3y+18=0\)

\(\Leftrightarrow (x^2-8x+16)+(y^2+3y+\frac{9}{4})=\frac{1}{4}\)

\(\Leftrightarrow (x-4)^2+(y+\frac{3}{2})^2=\frac{1}{4}\)

\(\Rightarrow (x-4)^2=\frac{1}{4}-(y+\frac{3}{2})^2\leq \frac{1}{4}<1\)

\(\Rightarrow -1< x-4< 1\Rightarrow 3< x< 5\)

\(x\in\mathbb{Z}\Rightarrow x=4\)

Thay vào pt ban đầu ta thu được \(y=-1\) or \(y=-2\)

Vậy.......

Bình luận (0)
AH
10 tháng 8 2018 lúc 23:10

Bài 2:

Ta có: \(x+y+xy=x^2+y^2\)

\(\Leftrightarrow 2x^2+2y^2=2x+2y+2xy\)

\(\Leftrightarrow 2x^2+2y^2-2x-2y-2xy=0\)

\(\Leftrightarrow (x^2-2xy+y^2)+(x^2-2x+1)+(y^2-2y+1)=2\)

\(\Leftrightarrow (x-y)^2+(x-1)^2+(y-1)^2=2(*)\)

\(\Rightarrow (y-1)^2\leq 2<4\Rightarrow -2< y-1< 2\)

\(\Rightarrow -1< y< 3\Rightarrow y\in\left\{0;1;2\right\}\)

Thay $y$ với các giá trị trên vào pt ban đầu ta thu được:

\(y=0\Rightarrow x=0, x=1\)

\(y=1\Rightarrow x=0; x=2\)

\(y=2\Rightarrow x=1;x=2\)

Bình luận (0)
EC
Xem chi tiết
PN
15 tháng 6 2022 lúc 22:36

\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)

\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)

\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)

\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)

đến đây giải hơi bị khổ =))

Bình luận (0)
MH
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
EC
Xem chi tiết