Những câu hỏi liên quan
DD
Xem chi tiết
OM
Xem chi tiết
CW
27 tháng 6 2016 lúc 22:03

http://olm.vn/hoi-dap/question/614962.html

Bình luận (0)
CW
27 tháng 6 2016 lúc 22:10

Ad ơi. Tha cho con, con chỉ trích link thôi mà. Với lại linh này cũng là của olm mà, sao ad duyệt lâu qá trời làm con sợ qá ak!!!!!

Bình luận (0)
NT
Xem chi tiết
TK
12 tháng 4 2020 lúc 22:25

= xz ( x + z ) + xy ( x + y + z ) + yz ( x + y + z )

= xz ( x + z ) + xy ( x + z ) + yz ( x + z ) + xy+ y2z

= ( xy + yz + zx ) ( x + z ) + y2( x + z )

= ( xy + y2 + yz + zx )( x + z )

= ( x + y ) ( y + z ) ( x + z )

Chúc bạn học tốt!

#peace

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
PA
8 tháng 10 2016 lúc 14:29

\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)

\(=y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)=\left(xy+y^2+zy+xz\right)\left(x+z\right)=\left\{y\left(x+y\right)+z\left(x+y\right)\right\}\left(x+z\right)=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Bình luận (0)
VK
Xem chi tiết
VT
29 tháng 9 2016 lúc 9:17

\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)

\(=x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)

\(\text{Chúc bạn học tốt \!}\)

\(\text{Nếu đúng thì tích nha !}\)

Bình luận (0)
TT
29 tháng 9 2016 lúc 10:27

xy(x+y)+yz(y+z)+xz(x+z)+2xyz

=x2y+xy2+y2x+yz2+x2z+xz2+2xyz

=> hết biết làm

Bình luận (0)
HT
Xem chi tiết
H24
Xem chi tiết
TH
12 tháng 3 2021 lúc 21:05

\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = z = 1.

Bình luận (1)
TN
Xem chi tiết
PA
Xem chi tiết
LF
9 tháng 4 2017 lúc 20:28

\(P=\dfrac{xy}{1+x+y}+\dfrac{yz}{1+y+z}+\dfrac{xz}{1+z+x}\)

\(P+3=\dfrac{xy}{1+x+y}+1+\dfrac{yz}{1+y+z}+1+\dfrac{xz}{1+z+x}+1\)

\(P+3=\dfrac{\left(x+1\right)\left(y+1\right)}{1+x+y}+\dfrac{\left(y+1\right)\left(z+1\right)}{1+y+z}+\dfrac{\left(x+1\right)\left(z+1\right)}{1+z+x}\)

\(P+3=\dfrac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(1+x+y\right)\left(z+1\right)}+\dfrac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(x+1\right)\left(1+y+z\right)}+\dfrac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(y+1\right)\left(1+z+x\right)}\)

\(P+3=\left(x+1\right)\left(y+1\right)\left(z+1\right)\left[\dfrac{1}{\left(1+x+y\right)\left(z+1\right)}+\dfrac{1}{\left(x+1\right)\left(1+y+z\right)}+\dfrac{1}{\left(y+1\right)\left(1+z+x\right)}\right]\)

\(\ge\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\left(1+x+y\right)\left(z+1\right)+\left(x+1\right)\left(1+y+z\right)+\left(y+1\right)\left(1+z+x\right)}\)

\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\text{ }2xy+2yz+2xz+3x+3y+3z+3}\)

\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\text{ }2xy+2yz+2xz+3\cdot2xyz}\)

\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\text{ }2\left(xy+yz+xz+3xyz\right)}\)

Lại có:

\(\left(x+1\right)\left(y+1\right)\left(z+1\right)=xyz+xy+yz+xz+x+y+z+1\)

\(=xyz+xy+yz+xz+2xyz=xy+yz+xz+3xyz\)

\(\Rightarrow P+3\ge\left(xy+yz+xz+3xyz\right)\cdot\dfrac{9}{2\left(xy+yz+xz+3xyz\right)}\)

\(\Rightarrow P+3\ge\dfrac{9}{2}\Rightarrow P\ge\dfrac{9}{2}-3=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1+\sqrt{3}}{2}\)

Bình luận (0)