tinh
1×2+2×3+⋯+100×101=
tinh1/2(1+2)+1/3(1+2+3)+....+1/100(1+2+3+...+100)
S=1×2+2×3+3×4+4×5+...........+99×100
3S=1×2×3+2×3×(4-1)+3×4×(5-2)+4×5×(6-3)+............+99×100×(101-98)
3S=1×2×3+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+.............+99×100×101-98×99×100
3S=99×100×101
Tại sao 3S=99×100×101
Các bạn giải thích hộ mình với!
MÌNH CẢM ƠN MỌI NGƯỜI!
Tính nhanh:
101+100+........+3+2+1/101-100+100-99+...........+3-2+1
( 101+100+.......+3+2+1 ) / ( 101-100+100_99+........+ 4 - 3 + 2 - 1 )
= [ ( 101+1 )+( 100+2 )+....+( 52+50 )+ 51 ] / [ ( 101-100 )+(100-99)+........+( 4 - 3 )+( 2 - 1 )
= 102+102+.........+102+51 / 1+1+..............+1+1
= { [ 51( cặp) * 102 ] +51 } / [ 51(cặp) * 1 ]
= 5252 + 51 / 51
= 5253 / 51
= 103
(101+100+99+...+3+2+1) : (101-100-99..-3-2-1)
25
tk nhe@@@@@@@@@@@
ai tk minh minh tk lai
bye
ghép A= (100-98) + (99-97) + (96-94) +....+ (8-6) + (7-5) + (4-2) + (3-1).
A có 100 số ghép thành 50 cặp mỗi cặp có hiệu =2 ==> A = 50x2 =100.
cách 2 :
ta có A=100+99 - 98-97 + 96+95 - 94-93 +... +8+7 -6-5 +4+3 -2-1 (có 100 số ) (1)
COI B=0= 2+2 - 2-2 +2+2 - 2-2 +...+ 2+2 - 2-2 +2+2 -2-2 (có 100 số 2)
=> A+B = A= 102+101 -100-99+ 98+97 - 96-95+ ...+ 10+9 -8-7+ 6+5 -4-3 (2)
Lấy (1) + (2) ta được:
2A = 102+101 -2-1 = 200
=> A= 100.
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)
\(\frac{A}{2}=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+....+\frac{100}{2^{101}}\)\(A-\frac{A}{2}=\left(1+\frac{3}{2^3}+....+\frac{100}{2^{100}}\right)-\left(\frac{1}{2}+\frac{3}{2^4}+.....+\frac{100}{2^{101}}\right)\)
\(\frac{A}{2}=\frac{1}{2}+\frac{3}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+....+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)
\(\frac{A}{2}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{100}}-\frac{1}{2^{101}}\)
\(\frac{A}{2}=\left(1-\left(\frac{1}{2}\right)^{101}\right).2-\frac{100}{2^{101}}\)
\(\frac{A}{2}=\frac{2^{101}-1}{2^{100}}-\frac{100}{2^{101}}\)
\(A=\frac{2^{101}-1}{2^{99}}-\frac{100}{2^{100}}\)
A=101+100+98+97+...+3+2+1/101-100+99-98+...+3-2+1
A = \(\dfrac{101+100+98+97+...+3+2+1}{101-100+99-98+...+3-2+1}\)
= \(\dfrac{\left(101+1\right).101:2}{1+1+1+...+1}\)
= \(\dfrac{5151}{101}\) = 51
101+100+99+98+...+3+2+1/101-100+99-98+...+3-2+1
Bằng 101 là đúng
101+100+........+1/101-100+99-98+..........+3-2+1
=(101+1)*101:2 / (101-100)+..................+(3-2)+1
=51*101 / 1+1+1+..........+1( có 51 số 1)
=51*101/51
=105
vậy ........................................................................................
101+100+99+98+...+3+2+1/101-100+99-98+...+3-2+1
\(A=\frac{101+100+99+98+....+3+2+1}{101-100+99-98+...+3-2+1}\)
\(A=\frac{1+2+3+...+98+99+100+101}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)có 50 cặp số ở dưới mẫu
\(A=\frac{\frac{101.102}{2}}{50.1+1}\)
\(A=\frac{5151}{51}\)
\(A=101\)
Đặt A = 101+100+....+3+2+1
=> Số số hạng của A là: (101-1)+1 = 101 (số)
Tổng A là: (101+1) x 101 :2 = 5151
Đặt B = 101 -100+99 -98+97+...+3-2+1
=> 100 +98+....+1
=> Số số hạng: (100-1)+1 = 100 (số)
Tổng B là: (100 +1) x 100 :2 = 5050
Vậy \(\frac{A}{B}=\frac{5151}{5050}=\frac{51}{50}\)
Tính
a)A=101+100+99+98+…+3+2+
101-100+99+98+…+3-2+1
b)B=3737.43-4343.37
2+4+6+…+100
Tính giá trị biểu thức \(\frac{\left(-3\right)^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\)(-3)^100.(-2)+3^101/(-3)^101-3^100
Giúp mik nhé,Đúng mik tick cho