\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...............+\frac{2}{101\cdot103}\)
Cho \(B=\frac{2^3}{3\cdot5}+\frac{2^3}{5\cdot7}+\frac{2^3}{7\cdot9}+...+\frac{2^3}{101\cdot103}\)
Tính B
B=22(\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+...+\(\frac{2}{101.103}\))
B=4[1/3-1/5+1/5-1/7+1/7-1/9 +...+1/101-1/103]
B=4[1/3-1/103]
B=4.(100/309)
B=400/309
MOI NGUOI NHO K VA KET BAN VOI MINH NHE
\(\frac{\frac{3}{5}\cdot7^2-3,5^6+\frac{3}{5}\cdot3^9}{\frac{3}{4}\cdot7^2-\frac{3}{4}\cdot5^7+\frac{3}{4}\cdot3^9}\)
so sánh \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}v\text{à}\frac{1}{2^2\cdot3\cdot5^2\cdot7}\)
Đặt A = \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}\)
=> A < \(\frac{1}{100.101}+\frac{1}{101.102}+....+\frac{1}{204.205}\)
=> A < \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{204}-\frac{1}{205}\)
=> A < \(\frac{1}{100}-\frac{1}{205}\)
=> A < \(\frac{1}{2100}\)
Đặt B = \(\frac{1}{2^2.3.5^2.7}=\frac{1}{2100}\)
=> A < B
=> \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}
giỏi lắm mình cũng biết làm chỉ hỏi chơi thôi
ủng hộ
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot12}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{11}{11}-\frac{1}{11}\)
\(=\frac{10}{11}\)
Chúc bạn học tốt !!!
\(E=\frac{2}{1\cdot3}\cdot\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)
\(E=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(E=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(E=\frac{1}{1}-\frac{1}{99}\)
\(E=\frac{98}{99}\)
E= \(\frac{2}{1.3}.\frac{2}{3.5}+...+\frac{2}{97.99}\)
E = 1 - \(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
E = 1 - 1/99
E = 98 / 99
Chúc bạn học tốt
Tính nhanh(gửi cả cách giải tớ sẽ tick cho)
\(\frac{1}{1\cdot3\cdot5}\)+\(\frac{1}{3\cdot5\cdot7}\)+\(\frac{1}{5\cdot7\cdot9}\)+...+\(\frac{1}{99\cdot101\cdot103}\)
\(\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{99.101.103}\)
=\(\frac{1}{4}\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{99.101.103}\right)\)
=\(\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{99.101}-\frac{1}{101.103}\right)\)
=\(\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{101.103}\right)\)
=\(\frac{1}{4}.\frac{10406}{31209}\)
=\(\frac{5230}{62418}\)
Ta có: 1/1.3.5 = (1/1.3 - 1/3.5).1/4
1/3.5.7 = (1/3.5 - 1/5.7).1/4
\(\Rightarrow\) 1/1.3.5 + 1/3.5.7 + 1/5.7.9 + ... + 1/99.101.103 = 1/4.(1/1.3 - 1/3.5 + 1/3.5 - 1/5.7 + ... + 1/99.101 - 1/101.103)
= 1/4.(1/3 - 1/10403)
= 2600/31209
Tớ nghĩ vậy, nếu đúng thì cho mk biết nha
Bài 1: Rút gọn rồi quy đồng
\(\frac{4\cdot5+4\cdot11}{8\cdot7-4\cdot3}\) \(\frac{-15\cdot8+10\cdot7}{5\cdot6+20\cdot3}\)và \(\frac{2^4\cdot5^2\cdot7}{2^3\cdot5\cdot7^3\cdot11}\)
\(\frac{16}{11},-\frac{5}{9},\frac{10}{539}\)
Bài 1: So sánh bằng cách hợp lí:
a)\(\frac{2016}{2017}\)và \(\frac{2017}{2018}\)
b) \(\frac{2018}{2017}\)và \(\frac{2017}{2016}\)
Bài 2: Tính nhanh
\(\frac{1}{1\cdot3}\)+ \(\frac{1}{3\cdot5}\)+\(\frac{1}{5\cdot7}\)+....+\(\frac{1}{101\cdot103}\)
bài 1
Ta có : 2016/2017<1
2017/2018<1
Nên 2016/2017=2017/2018
Bài 1 :
a) Ta có : \(\frac{2016}{2017}=1-\frac{1}{2017}\)
\(\frac{2017}{2018}=1-\frac{1}{2018}\)
Vì \(-\frac{1}{2017}< -\frac{1}{2018}\)nên \(\frac{2016}{2017}< \frac{2017}{2018}\)
b) Ta có : \(\frac{2018}{2017}=1+\frac{1}{2017}\)
\(\frac{2017}{2016}=1+\frac{1}{2016}\)
Vì \(\frac{1}{2017}< \frac{1}{2016}\) nên \(\frac{2018}{2017}< \frac{2017}{2016}\)
Câu 2 :
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{101.103}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{101.103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\frac{102}{103}=\frac{51}{103}\)
tính : \(A=\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+\frac{2}{5\cdot6}+\frac{2}{6\cdot7}\)
\(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}\)
\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=2.\left(1-\frac{1}{7}\right)\)
\(A=2.\frac{6}{7}\)
\(A=\frac{12}{7}\)
\(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}\)
\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=2.\left(1-\frac{1}{7}\right)\)
\(A=2.\left(\frac{7}{7}-\frac{1}{7}\right)\)
\(A=2.\frac{6}{7}\)
\(A=\frac{12}{7}\)
Chúc bạn học tốt !!!
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=2\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=2\left(\frac{1}{1}-\frac{1}{7}\right)\)
\(=2\times\frac{6}{7}\)
\(=\frac{12}{7}\)
Tk mk nha ~~