tìm gtrị lớn nhất của biểu thức sau:
(3x^2-1+6x)/x^2
cảm ơn nhiều nha :*
B= (1-2x)(x+3)-9. Tìm Gtrị lớn nhất của biểu thức
D= 2x2 + 9y2 - 6xy - 6x -12y+20. Tìm Gtrị nhỏ nhất của biểu thức.
Mai mình cần nộp bài rồi. Tối nay các bạn giúp đỡ mình nhé! Mình cảm ơn!
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
tìm giá trị nhỏ nhất của biểu thức :
A= x^3-3x^2+3x5 với x> hoặc = 2
B=x^3 + 6x^2+12x-1 với x> hoặc =-1
~ giúp mk nha, cảm ơn nhiều !!! ~
A= x^3-3x^2+3x5
=x2(3x3+x-3)
Để giá trị của A nhỏ nhất
=>x=2.Thay x=2 vào ta đc:
A=22(3*23+2-3)=4(3*8+2-3)
=4(24+2-3)=4*23=92
B=x^3 + 6x^2+12x-1
=x3+6x2+12x+8-9
=(x+2)3-9
Để giá trị của B nhỏ nhất
=>x=-1.Thay x=-1 vào ta được:
B=[(-1)+2]3-9=[1]3-9=-8
Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của các biểu thức sau: x^2-4x+10; (1-x)(3x-4); 3x^2-9x+5; -2x^2+5x+2; -3x^2-6x+5; x^4-2x^2+3.
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:
a) \(4x^2+4x+11\)
b) \(3x^2-6x+1\)
c) \(x^2-2x+y^2-4y+6\)
Mình đang cần lời giải (chi tiết). Xin giúp đỡ. Cảm ơn nhiều
a)\(A=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu = khi \(x=\frac{-1}{2}\)
Vậy MinA=10 khi \(x=\frac{-1}{2}\)
b)\(B=3x^2-6x+1\)
\(=3x^2-6x+3-2\)
\(=3\left(x^2-2x+1\right)-2\)
\(=3\left(x-1\right)^2-2\ge-2\)
Dấu = khi \(x=1\)
Vậy MinB=-2 khi \(x=1\)
c)\(C=x^2-2x+y^2-4y+6\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
tìm gtrị lớn nhất v gtrị nhỏ nhất của bt M=\(x = {x^2+6x-5 {} \over x^2+2}\)
Tìm giá trị lớn nhất hoặc Nhỏ nhất của các biểu thức sau C =5-6x-x^2
D=3x(x+4)-9
tìm giá trị lớn nhất của biểu thức
a/ 3x2+6x+1
b/ 2x2+6x+5
thank trước nha
\(3x^2+6x+1=3\left(x^2+2x+\frac{1}{3}\right)=3\left(x^2+2x.1+1^2-1^2+\frac{1}{3}\right)=3\left[\left(x+1\right)^2-\frac{2}{3}\right]=\)
\(=3\left(x+1\right)^2-2\)
Vậy giá trị lớn nhất là -2 tại x = -1
Câu B tương tự
Tìm giá trị nhỏ nhất của A biết A=15+(x-7)2
Cảm ơn nha!!!
Ta có: \(\left(x-7\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-7\right)^2+15\ge15\forall x\)
Dấu '=' xảy ra khi x-7=0
hay x=7
Vậy: Giá trị nhỏ nhất của biểu thức \(A=15+\left(x-7\right)^2\) là 15 khi x=7
A = 15+(x-7)2
\(\Rightarrow\)(x-7)2 là số nhỏ nhất
\(\Rightarrow\)(x-7)2 = 0
\(\Rightarrow\)15 + 0 = 15
\(\Rightarrow\)Giá trị nhỏ nhất của A = 15
tìm giá trị lớn nhất ,nhỏ nhất của các biểu thức sau:
a)3x^2+6x+4
b)-3x-x^2+4
c)9x^2-6x+8
d)5x-16x^2+4
e)-2x-x^2+4
a) Đặt A = \(3x^2+6x+4\)
\(A=3\left(x^2+2x+1\right)+1\)
\(A=3\left(x+1\right)^2+1\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy Min A =1 khi x = -1
b) Đặt \(B=-3x-x^2+4\)
\(-B=x^2+3x-4\)
\(-B=\left(x^2+3x+\frac{9}{4}\right)-\frac{25}{4}\)
\(-B=\left(x+\frac{3}{2}\right)^2-\frac{25}{4}\)
Mà \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-B\ge\frac{-25}{4}\)
\(\Leftrightarrow B\le\frac{25}{4}\)
Dấu "=" xảy ra khi : \(x=-\frac{3}{2}\)
Vậy...