Những câu hỏi liên quan
TN
Xem chi tiết
NL
6 tháng 2 2020 lúc 10:44

P=1+1/2+1/3+1/4+...+1/2^100-1

suy ra P=1+1/2+1/3+1/2^2+...+1/2^100+1/2^100-1+1/2^100-1/2^100

suy ra P=1+1/2+(1/3+1/2^2)+(1/5+1/2^3)+...+(1/2^99+1+...+1/2^100)-1/2^100

suy ra P>1+1/2+1/2^2.2+1/2^3.3^2+...+1/2^100.2^99-1/2^100

suy ra P>1+1/2.100-1/2^100

suy ra P>51-1/2^100>51-1

suy ra P>50(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
NS
7 tháng 2 2020 lúc 15:55

P=1+1/2+1/3+1/4+...+1/2^100-1

suy ra P=1+1/2+1/3+1/2^2+...+1/2^100+1/2^100-1+1/2^100-1/2^100

suy ra P=1+1/2+(1/3+1/2^2)+(1/5+1/2^3)+...+(1/2^99+1+...+1/2^100)-1/2^100

suy ra P>1+1/2+1/2^2.2+1/2^3.3^2+...+1/2^100.2^99-1/2^100

suy ra P>1+1/2.100-1/2^100

suy ra P>51-1/2^100>51-1

suy ra P>50(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
JA
1 tháng 9 2016 lúc 10:15

Gọi biểu thức trên là A.

Chứng minh A > 50

\(A=1+\frac{1}{2}+\left(\frac{1}{2^1+1}+\frac{1}{2^2}\right)+\left(\frac{1}{2^2+1}+\frac{1}{6}+...+\frac{1}{2^3}\right)+...+\left(\frac{1}{^{2^{100-2}+1}}+...+\frac{1}{2^{100-1}}\right)\\ \)

\(A>1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100-1}}2^{100-2}\)

\(A>\left(\frac{1}{2}+\frac{1}{2}\right)+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)

\(< =>A>\frac{100}{2}=50\)

Chứng minh A<100

\(A=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+\frac{1}{5}+...+\frac{1}{7}\right)+....+\left(\frac{1}{2^{100-2}}+\frac{1}{2^{100-2}+1}+...+\frac{1}{2^{100-1}-1}\right)\)-\(\frac{1}{2^{100-1}}\)

\(A< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{100-2}}.2^{100-2}+\frac{1}{2^{100-1}}\)

\(A< 1+1+1+...+1+\frac{1}{2^{100-1}}\)

\(A< 1.99+\frac{1}{2^{100-1}}< 99+1=100\)

Bình luận (0)
TT
1 tháng 9 2016 lúc 13:03

ta có : 1+1/2+1/3+....+1/2^100-1   

= 1/2x2 +1/3x2 +1/4x2 +...+ 1/2^100 x2

= 2x(1/2+1/3+1/4+...+1/2^100)      

=.................... làm đến đây mk tịt

Bình luận (0)
TL
1 tháng 9 2016 lúc 13:06

mk có chacha

Bình luận (0)
H24
Xem chi tiết
TD
31 tháng 5 2017 lúc 8:25

a) Để chứng minh rằng A < 100, ta chia A thành 100 nhóm :

A = \(1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+...+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}}-1\right)\)

Thay các phân số trong mỗi dấu ngoặc bằng phân số lớn nhất trong dấu ngoặc đó, ta được :

A < \(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+...+\frac{1}{2^{99}}.2^{99}=100\)

b) Để chứng minh rằng A > 50, ta thêm và bớt \(\frac{1}{2^{100}}\)rồi viết A dưới dạng sau :

A = \(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+...+\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{99}+1}+...+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)

Thay các phân số trong mỗi dấu ngoặc bằng phân số nhỏ nhất trong dấu ngoặc đó, ta được :

A > \(1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100}}.2^{99}-\frac{1}{2^{100}}=1+\frac{1}{2}.100-\frac{1}{2^{100}}>50\)

Bình luận (0)
VD
31 tháng 5 2017 lúc 9:36

bn là râu trắng à

Bình luận (0)
H24
Xem chi tiết
DH
4 tháng 3 2018 lúc 20:44

no thanks

Bình luận (0)
HH
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
19 tháng 2 2018 lúc 16:33

con ko bit CM

Bình luận (0)
HH
Xem chi tiết