1/1*2+1/2*3+1/3*4+............+1/x(x+1)=499/500
1/1*2 + 1/2*3 +1/3*4 +.....+ 1/x(x+1) =499/500
Hãy tìm x
Tìm X:
1/1 x 2 +1/2 x 3+ 1/3 x 4 + .........+1/ X x ( X +1) = 499/500
giải chi tiết gúp mình với ,cô sắp kểm tra rùi !!!!!!!!!!!!!!!
ta có:
1-1/2+1/2-1/3+1/3-1/4+....+1/x -1/x+1 =499/500
1-1/x+1 =499/500
1/x+1 =1/500
x+1=500
x=499
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{X\times\left(X+1\right)}=\frac{499}{500}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{X}-\frac{1}{X+1}=\frac{499}{500}\)
\(\Leftrightarrow1-\frac{1}{X+1}=\frac{499}{500}\)
\(\Leftrightarrow\frac{1}{X+1}=\frac{1}{500}\)
\(\Leftrightarrow X+1=500\)
\(\Leftrightarrow X=499\)
1x2 là mẫu à?
1.1/2+1.2/3+1/3.4+1/4.5+..+1/x(x+1)=499/500
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{499}{500}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{499}{500}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{499}{500}\)
\(\Leftrightarrow x=499\)
1)tìm x biết
(1/1*2+1/2*3+1/3*4+...+1/x*x+1)=499/500
2)khi nhân 1 số với 9,05.1 bạn đã sơ ý quên viết số 0 của số 9,05 nên tích tăng thêm 5,76 đơn vị so với tích đúng.tìm tích đúng
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{x+1}=\frac{499}{500}\)
1 - 499/500 = 1/x + 1
1/500 = 1/x+1
x + 1 = 500
x = 499
bài 1:tìm X
phần a, 1/1x2 + 1/ 2x 3 + 1/ 3 x4 + ....+ 1/ X x( X +1)= 499 / 500
phần b,1/1x3 + 1/3x5 + 1/ 5 x 7+ ....+ 1/X x ( X + 2 )= 20 /41
a) 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/x.(x+1) = 499/500
1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .... + 1/x - 1/x+1 = 499/500
1 - 1/x+1 = 499/500
1/x+1 = 1 - 499/500
1/x+1 = 1/500
x + 1 = 500
x = 500 - 1
x = 499
b) 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/x.(x+2) = 20/41
1/2 . [ 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/x.(x+2) ] = 20/41
1/2 . [ 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x+2 ] = 20/41
1/2 . [ 1 - 1/x+2 ) = 20/41
1 - 1/x+2 = 20/41 : 1/2
1 - 1/x+2 = 40/41
1/x+2 = 1 - 40/41
1/x+2 = 1/41
x + 2 = 41
x = 41 - 2
x = 39
(CMR:1-1/2+1/3-1/4+...-1/498+1/499-1/500=1/247+1/248+1/249+...+1/500).
Tính tổng: S = 1-1/2 + 1/3-1/4 + 1/5-1/6 + ..... 1/499-1/500
S = 1-1/2 + 1/3-1/4 + 1/5-1/6 + ..... 1/499-1/500 = (1 + 1/3 + 1/5 + ..+ 1/499) - (1/2 + 1/4 + 1/6 + ...+ 1/500) - (1/2 + 1/4 + 1/6 + ...+ 1/500) + (1/2 + 1/4 + 1/6 + ...+ 1/500) S = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500) - 2.(1/2 + 1/4 + 1/6 + ...+ 1/500) = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500)- (1 + 1/2 + 1/3 + ...+1/250) = 1/251 + 1/252 + ...+ 1/500.
Vậy S = 1/251 + 1/252 + ...+ 1/500
Tính tổng: S = 1-1/2 + 1/3-1/4 + 1/5-1/6 + ..... 1/499-1/500
S = 1-1/2 + 1/3-1/4 + 1/5-1/6 + ..... 1/499-1/500
= (1 + 1/3 + 1/5 + ..+ 1/499) - (1/2 + 1/4 + 1/6 + ...+ 1/500) - (1/2 + 1/4 + 1/6 + ...+ 1/500) + (1/2 + 1/4 + 1/6 + ...+ 1/500)
S = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500) - 2.(1/2 + 1/4 + 1/6 + ...+ 1/500)
= (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500)- (1 + 1/2 + 1/3 + ...+1/250)
= 1/251 + 1/252 + ...+ 1/500.
Vậy S = 1/251 + 1/252 + ...+ 1/500
1, Tính:
a) -287 + 499 + (-499) + 285
b) 1992 + (-53) + 158 + (-247) + (-1592)
c) 15 x (2 x 3\(^2\) - 4\(^2\)) + (7 x 2\(^0\)- 1) x (5\(^5\) : 5\(^4\) + 10\(^1\))
b: Ta có: \(1992+\left(-53\right)+158+\left(-247\right)+\left(-1592\right)\)
\(=\left(1992-1592\right)+\left(-53-247\right)+158\)
\(=400-300+158=258\)