Những câu hỏi liên quan
LP
Xem chi tiết
NT
4 tháng 11 2021 lúc 22:12

\(A\ge2020\forall x,y\)

Dấu '=' xảy ra khi x=-5 và y=2021

Bình luận (0)
TD
Xem chi tiết
YN
20 tháng 11 2021 lúc 22:20

Answer:

Ta áp dụng: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu '' = '' xảy ra khi: \(a.b\ge0\)

\(\Rightarrow A=\left|1-x\right|+\left|x+2020\right|\ge\left|1-x+x+2020\right|=2021\)

Dấu '' = '' xảy ra khi: \(\left(1-x\right).\left(x+2020\right)\ge0\Rightarrow-2020\le x\le1\)

Vậy giá trị nhỏ nhất của biểu thức \(A=2021\) khi \(-2020\le x\le1\)

Bình luận (0)
 Khách vãng lai đã xóa
LA
20 tháng 11 2021 lúc 22:33

Bạn Yen Nhi: đề ghi là |x+1| nhé

Bình luận (0)
 Khách vãng lai đã xóa
YN
21 tháng 11 2021 lúc 11:00

Mình làm lại bài nhé. (Bài trước nhầm đề)

Answer:

\(A=\left|x+1\right|+\left|x+2020\right|=\left|x+1\right|+\left|-x-2020\right|\)

Ta áp dụng bất đẳng thức: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta được

\(A\ge\left|x+1-x-2020\right|=\left|-2019\right|=2019\)

Dấu '' = '' xảy ra khi: \(\left(x+1\right).\left(-x-2020\right)\ge0\)

Trường hợp 1: \(\hept{\begin{cases}x+1\ge0\\-x-2020\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le-2020\end{cases}\Rightarrow-1\le x\le-2020\left(\text{Loại}\right)}\) 

Trường hợp 2: \(\hept{\begin{cases}x+1\le0\\-x-2020\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le-1\\x\ge-2020\end{cases}}\Rightarrow-2020\le x\le-1\)

Vậy giá trị nhỏ nhất của biểu thức \(A=2019\) khi \(-2020\le x\le-1\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NT
10 tháng 5 2023 lúc 9:37

B=|x-2020|+|2021-x|>=|x-2020+2021-x|=1

Dấu = xảy ra khi 2020<=x<=2021

Bình luận (0)
PN
Xem chi tiết
H24
25 tháng 10 2020 lúc 18:02

Ta có: \(|x-2019|\ge0\forall x\in Q\)

          \(|y-2020|\ge0\forall y\in Q\)

\(\Rightarrow|x-2019|+|y-2020|+7\ge7\forall x,y\in Q\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2019=0\Rightarrow x=2019\\y-2020=0\Rightarrow x=2020\end{cases}}\)

          Vậy GTNN của S là 7 khi x = 2019; y = 2020

Bình luận (0)
 Khách vãng lai đã xóa
VA
Xem chi tiết
CH
29 tháng 4 2016 lúc 9:08

Với \(x<4,\) ta có: \(A=-x+4-x+2020=2024-2x\). Do \(x<4\) nên \(A>2024-2.4=2016\).

Với \(4\le x\le2020\), ta có: \(A=x-4-x+2020=2016\).

Với \(x>2020,\) ta có \(A=x-4+x-2020=2x-2024\). Do \(x>2020\) nên \(A>2.2020-2024=2016\)

Vậy \(minA=2016\) khi \(x\in\left[4;2020\right]\)

Chúc em luôn học tập tốt :)

Bình luận (0)
VA
Xem chi tiết
DM
29 tháng 4 2016 lúc 8:12

2016 nhé! Ủng hộ nha

Bình luận (0)
NP
Xem chi tiết
NH
12 tháng 5 2020 lúc 16:49

Vì \(|x-2020|\ge0\)

=> \(|x-2020|+12\ge12\)

=> Giá trị nhỏ nhất của biểu thức A là 12.

Bình luận (0)
 Khách vãng lai đã xóa
MQ
12 tháng 5 2020 lúc 16:49

Ta có : \(\left|x-2020\right|\ge0\)

\(\Rightarrow\left|x-2020\right|+12\ge12\)

Dấu "=" xảy ra khi \(\left|x-2020\right|=0\)

\(\Rightarrow x-2020=0\)

\(\Rightarrow x=2020\)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
NN
12 tháng 5 2020 lúc 16:59

Vì \(\left|x-2020\right|+12\ge0\forall x\)

\(\Rightarrow\left|x-2020\right|+12\ge12\forall x\)

hay \(A\ge12\)

Dấu " = " xảy ra \(\Leftrightarrow x-2020=0\)\(\Leftrightarrow x=2020\)

Vậy \(minA=12\)\(\Leftrightarrow x=2020\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
AH
30 tháng 4 2023 lúc 23:28

Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$Q=|x-2020|+|x-2021|=|x-2020|+|2021-x|\geq |x-2020+2021-x|=1$
Vậy $Q_{\min}=1$
Giá trị này đạt tại $(x-2020)(2021-x)\geq 0$

$\Leftrightarrow 2020\leq x\leq 2021$

$x\in\mathbb{N}$ nên $x\in\left\{2020; 2021\right\}$

Bình luận (0)
DV
Xem chi tiết