Những câu hỏi liên quan
HA
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
TH
Xem chi tiết
LS
Xem chi tiết
NL
24 tháng 2 2021 lúc 18:51

\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)

\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)

\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)

Mà x nguyên dương \(\Rightarrow2x-1>0\)

\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\) 

\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)

Bình luận (0)
TH
Xem chi tiết
ON
12 tháng 12 2018 lúc 21:40

Câu a bạn giản ước đì rồi táchr a nhé

b) Ta có (x+y)2>=0

=>x2+y2+2xy>=0

=>x2+y2>= -2xy

=> x2+y2+x2+y>=x2+y2-2xy=(x-y)2=1

=>2x2+2y2>=1

=>2x2+2y2+2>=3

=> \(\frac{2x^2+2y^2+2}{4}>=\frac{3}{4}\)

=>\(\frac{x^2+y^2+1}{2}>=\frac{3}{4}\)

Mà (x-y)2=1 => x2+y2-2xy=1

=>x2+y2-1=2xy

=.\(xy=\frac{x^2+y^2-1}{2}\) 

=> \(xy+1=\frac{x^2+y^2-1}{2}+1=\frac{x^2+y^2+1}{2}\)

=> xy+1>=3/4

Bình luận (0)
TD
Xem chi tiết
H24
3 tháng 11 2017 lúc 20:08

Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số. 
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố. 
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số. 
Vậy p = 3. 

Bình luận (0)
TD
3 tháng 11 2017 lúc 20:12

p và q bạn nả

Bình luận (0)