tìm giá trị lớn nhất của biểu thức C= 2x - 2x^5 - 5
Tìm giá trị nhỏ nhất của biểu thức : a, ( x-2)^2 ; b, (2x-1)^2+1 Tìm giá trị lớn nhất của biểu thức a, -x^2 ; b, -2x^2+5 ; c, 1/ 2x^2+5
a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)
nên Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2
a. Tìm giá trị lớn nhất của biểu thức: B = 10\(-5-\left(2x-5\right)^2\)
b. Tìm giá trị nhỏ nhất của biểu thức :C = |2x -4|- |2x- 6|
a. ta có (2x-5)2 >= 0 với mọi x thuộc R
vậy 5 -(2x-5)2 <= 5
dấu = xảy ra khi (2x-5)2=0
vậy 2x-5=0
2x =5
x= 5/2=2,5
Vậy để B lớn nhất thì x=2,5
b. ta có | 2x-4| >= 0 với mọi x thuộc R
| 2x-6| >= 0 với mọi x thuộc R
vậy | 2x-4 |- |2x-6| >= 0
dấu = xảy ra khi |2x-4| và |2x-6| đều bằng 0
=> 2x-4=0 => 2x - 6=0
2x =4 2x =6
x=4/2=2 x= 6/2=3
a, Tìm giá trị nhỏ nhất của biểu thức :
A= (-14)+3./x-5/
b, Tìm giá trị lớn nhất của biểu thức :
B=5-/2x+9/
C=(-5)-2./x-7/
Tìm giá trị nhỏ nhất của biểu thức: A=x^2-2
Tìm giá trị lớn nhất của biểu thức: B= 5-x^2+2x
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:
a) S= 3/2x²+2x+3
b) T= 5/3x²+4x+15
c) V= 1/-x²+2x-2
d) X= 2/-4x²+8x+5
c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)
\(\Leftrightarrow V\ge-1\forall x\)
Dấu '=' xảy ra khi x=1
Với x là số nguyên.
a) Tìm giá trị nhỏ nhất của biểu thức: M = (2x - 4)4 + 5.
b) Tìm giá trị lớn nhất của biểu thức: N = 10 - / x + 2 /
a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)
\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)
Dấu '=' xảy ra khi 2x-4=0
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2
b) Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)
\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)
Dấu '=' xảy ra khi x+2=0
hay x=-2
Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2
tìm giá trị lớn nhất của biểu thức N =2x - 2x2 -5
Ta có : \(N=2x-2x^2-5\)
\(=-\left(2x^2-2x+5\right)\)
\(=-\left[\left(\sqrt{2}x\right)^2-2.\sqrt{2}.x.\frac{\sqrt{2}}{2}+\left(\frac{\sqrt{2}}{2}\right)^2-\left(\frac{\sqrt{2}}{2}\right)^2+5\right]\)
\(=-\left[\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2-\frac{1}{2}+5\right]\)
\(=-\left[\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2+\frac{9}{2}\right]\)
Vì \(\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2\ge0\)với mọi x
nên \(\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)với mọi x
\(\Rightarrow-\left[\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2+\frac{9}{2}\right]\le-\frac{9}{2}\)với mọi x
Dấu "=" xảy ra khi \(\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2=0\)
\(\Rightarrow\sqrt{2}x-\frac{\sqrt{2}}{2}=0\Rightarrow x=\frac{1}{2}\)
Vậy GTLN của biểu thức trên là \(\frac{-9}{2}\)khi x=\(\frac{1}{2}\)
!!Chúc học tốt!!!
Tìm giá trị lớn nhất của biểu thức: C=-5- (y-5)2- |2x-3|-2.|1-x|
Tìm giá trị nhỏ nhất của biểu thức sau:
B= (x+2)^2+(y-5/2)^2018-10
D= |2x-1|+|2x-5|
Tìm giá trị LỚN nhất của biểu thức
A= \(\frac{3}{\left(2x-3\right)^4+5}\)
C= \(\frac{27-2x}{12-x}\) (x thuộc Z)