Những câu hỏi liên quan
DB
Xem chi tiết
NT
14 tháng 1 2021 lúc 21:47

Bài 1 : \(4\left(x-1\right)^2=x^2\Leftrightarrow4\left(x^2-2x+1\right)=x^2\)

\(\Leftrightarrow4x^2-8x+4-x^2=0\Leftrightarrow3x^2-8x+4=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\Leftrightarrow x=\frac{2}{3};2\)

Áp dụng với trung bình cộng 2 số : \(\frac{\frac{2}{3}+2}{2}=\frac{8}{\frac{3}{2}}=\frac{4}{3}\)

Bài 2 : Đặt A =  \(x^2-2x-3=x^2-2x+1-4=\left(x-1\right)^2-4\ge-4\)

Dấu ''='' xảy ra <=> x = 1 

Vậy GTNN A là -4 <=> x = 1

Bài 3 : \(x^2-5x+4=x^2-4x-x+4=x\left(x-4\right)-\left(x-4\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\Leftrightarrow x=1;4\)

Tổng các giá trị x là : \(1+4=5\)

Bình luận (0)
 Khách vãng lai đã xóa
BD
14 tháng 1 2021 lúc 22:47

3, Tổng các giá trị của x thỏa mãn:

\(x^2-5x+4=0\)

\(\Leftrightarrow x^2-4x-x+4=0\)

\(\Leftrightarrow x\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)

Vậy tổng các giá trị x thỏa mãn phương trình: S = 4 + 1 = 5

Bình luận (0)
 Khách vãng lai đã xóa
FM
Xem chi tiết
GH
5 tháng 7 2023 lúc 7:49

\(\Delta=\left(m+1\right)^2-4.1.2=\left(m+1\right)^2-8\)

Để PT có 2 nghiệm thì:

\(\Delta\ge0\Leftrightarrow\left(m+1\right)^2-8\ge0\\ \Leftrightarrow\left(m+1\right)^2\ge8\)

Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=-\left(m+1\right)\\x_1x_2=2\end{matrix}\right.\)

\(x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m+1\right)^2-2.2=\left(m+1\right)^2-4\)

Mà \(\left(m+1\right)^2\ge8\) nên \(\left(m+1\right)^2-4\ge4\)

\(\Rightarrow min_{x_1^2+x_2^2}=4\) (dấu bằng xảy ra)

\(\Leftrightarrow\left(m+1\right)^2=8\)

\(\Leftrightarrow m^2+2m+1=8\\\Leftrightarrow m^2+2m-7=0 \)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

Bình luận (0)
H24
Xem chi tiết
DK
18 tháng 4 2021 lúc 15:58

Áp dụng BĐT cói cho 2 số ko âm ta có 

X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12 

Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y 

( thông cảm mình gõ mũ ko đc ) 

Bình luận (0)
H24
Xem chi tiết
AT
Xem chi tiết
AH
30 tháng 6 2023 lúc 22:12

Lời giải:

$A=(x+y)(x^2-xy+y^2)+x^2+y^2=2(x^2-xy+y^2)+x^2+y^2=2(x^2+y^2)+(x-y)^2$

$\geq 2(x^2+y^2)=(1^2+1^2)(x^2+y^2)\geq (x+y)^2=2^2=4$ (theo BĐT Bunhiacopxky)

Vậy $A_{\min}=4$. Giá trị này đạt tại $x=y=1$

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 9 2018 lúc 12:56

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 6 2017 lúc 4:45

Bình luận (0)
TH
Xem chi tiết
PB
Xem chi tiết
CT
22 tháng 9 2019 lúc 8:34

Đáp án C

Bình luận (0)