Những câu hỏi liên quan
HK
Xem chi tiết
DD
23 tháng 4 2018 lúc 14:49

Câu a :

Theo BĐT cauchy schwar ta có :

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}=\dfrac{9}{x+y+z}\)

\(\Rightarrow\left(x+y+z\right)\left(\dfrac{9}{x+y+z}\right)\ge9\)

Câu b : Sửa lại đề nha :

Theo BĐT cauchy schwar ta có :

\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\dfrac{9}{\left(a+b+c\right)^2}\)

\(a+b+c\le\Rightarrow\left(a+b+c\right)^2\le1\)

\(\Rightarrow\) \(\dfrac{9}{\left(a+b+c\right)^2}\ge9\)

Bình luận (1)
QN
Xem chi tiết
NH
Xem chi tiết
TT
14 tháng 2 2020 lúc 22:42

Bài 2:

a, |x-1| -x +1=0

|x-1| = 0-1+x

|x-1| = -1 + x

 \(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)

 \(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)

 \(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)

x = 2-x

2x = 2

x = 2:2

x=1

b, |2-x| -2 = x

|2-x| = x+2

\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)

2-x = x+2

x+x = 2-2

2x = 0

x = 0

Bình luận (0)
 Khách vãng lai đã xóa
NN
14 tháng 10 2021 lúc 20:44

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Bình luận (0)
 Khách vãng lai đã xóa
BN
Xem chi tiết
MV
1 tháng 8 2017 lúc 17:33

a,

\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)

Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)

d,

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)

Bình luận (0)
MS
1 tháng 8 2017 lúc 17:44

Bạn mới hỏi ở dưới rồi :v

Bình luận (0)
MV
1 tháng 8 2017 lúc 17:48

b,

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{2}{5}\right|\ge0\forall y\\ \left|z+\dfrac{1}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\ge0\forall x,y,z\\ \)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{2}{5}\right|=0\\\left|z+\dfrac{1}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{2}{5}=0\\z+\dfrac{1}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{2}{5}\\z=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy ...

c,

\(\left|x+\dfrac{19}{5}\right|\ge0\forall x\\ \left|y+\dfrac{1890}{1975}\right|\ge0\forall y\\ \left|z-2004\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{1890}{1975}\right|=0\\\left|z-2004\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-1890}{1975}=\dfrac{-378}{395}\\z=2004\end{matrix}\right. \)

Vậy ...

Bình luận (0)
DB
Xem chi tiết
LT
Xem chi tiết
PK
22 tháng 11 2018 lúc 21:11

bn có lời giải chưa

Bình luận (0)
NH
Xem chi tiết
LH
16 tháng 2 2020 lúc 19:06

tu lam

Bình luận (0)
 Khách vãng lai đã xóa
CB
Xem chi tiết
LY
Xem chi tiết
TH
30 tháng 12 2020 lúc 16:16

2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)

Bình luận (0)
TH
30 tháng 12 2020 lúc 16:26

1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).

CM:....

Đặt 2x = x', 2z = z'.

Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)

\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)

\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)

 

 

Bình luận (0)