Phân số x/y tối giản với mẫu dương thỏa mãn 2x-4/3y-5 = 4/5
Bài 1: Cho a+b+c= 2007 và 1/a+b + 1/b+c + 1/c+a=1/90
tính S = a/b+c +b/c+a + c/a+b
Bài 2: Tìm 3 phân số tối giản. Biết tổng của chúng bằng 15và 83/130 , tử số của chúng tỉ lệ thuận với 5;7;11 , mẫu số của chúng tỉ lệ nghịch với 1/4;1/5;1/6
Bài 3: Tìm các số nguyên x và y thỏa mãn đẳng thức: 2x2 + 3y2= 77
lm ơn giúp mk với
B
+ Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD
=> DH \(\perp\)CD
+ Áp dụng định lý Pitago vào ▲vuông DHC có :
DC2 = DH2 + CH2 (1)
+ Xét ▲vuông ABC có : AH là đường trung tuyến ứng vs cạnh huyền.
=> AH = \(\frac{BC}{2}\)=CH (2)
Từ (1) và (2) có :
DC2 = DH2 + CH2 = DH2 + AH2 ( đpcm )
+ Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD
=> DH \(\perp\)CD
+ Áp dụng định lý Pitago vào ▲vuông DHC có :
DC2 = DH2 + CH2 (1)
+ Xét ▲vuông ABC có : AH là đường trung tuyến ứng vs cạnh huyền.
=> AH = \(\frac{BC}{2}\)=CH (2)
Từ (1) và (2) có :
DC2 = DH2 + CH2 = DH2 + AH2 ( đpcm )
Tìm 2 phân số tối giản. Biết hiệu của chúng là 3/196 và các tử tỉ lệ với 3; 5 và các mẫu tỉ lệ với 4; 7
gọi 2 phân số đó là \(\frac{a}{b}\) và \(\frac{c}{d}\)
theo đề ta có:
\(\frac{a}{b}-\frac{c}{d}=\frac{3}{196}\) (1)
\(\frac{a}{c}=\frac{3}{5}=>a=\frac{3c}{5}\) (2)
\(\frac{b}{d}=\frac{4}{7}=>b=\frac{4d}{7}\) (3)
lấy (2) và (3) thay vào (1) ta có:
\(\frac{21c}{20d}-\frac{c}{d}=\frac{3}{196}\)
\(=>\frac{c}{d}=\frac{16}{49}\)
thay vào (1): \(\frac{a}{b}=\frac{9}{28}\)
=> 2 phân số cần tìm là \(\frac{15}{49}va\frac{9}{28}\)
Gọi 2 phân số cần tìm là a/b và c/d.
- Giả sử a/b > c/d
Theo đề bài, ta có:
{a : c = 3 : 5
{b : d = 4 : 7
<=> Tỉ số của 2 phân số là: a/b : c/d = 3/4 : 5/7
<=> a/b . d/c = 3/4 . 7/5
<=> ad / bc = 21/20
<=> ad = 21/20 . bc = (21bc)/20
Ta lại có:
a/b - c/d = (ad - bc)/bd = 3/196
<=> [(21bc) / 20 - bc] / bd = 3/196
<=> [(21bc) / 20] / bd - bc / bd = 3/196
<=> (21bc) / 20 . 1 / bd - bc / bd = 3/196
<=> 21c / 20d - c / d = 3/196
<=> 21c / 20d - 20c / 20d = 3/196
<=> c / 20d = 3/196
=> c : 3 và 20d : 196 => c : 3 và d : 196/20 => c : 3 và d : 49/5
<=> c/d = 3 : 49/5 = 3 . 5 : 49 = 15/49
=> c = 15 ; d = 49
=> a : c = 3 : 5 => a : 15 = 3 : 5 => a = 9
và b : d = 4 : 7 => b : 49 = 4 : 7 => b = 28
=> a/b = 9/28 và c/d = 15/49
Thử lại, a/b - c/d = 9/28 - 15/49 = 3/196 (đúng theo yêu cầu đề bài)
- Do đó, 2 phân số cần tìm là 9/28 và 3/196
bài của mk là đúng dax
thầy mk nói là dg rồi
tìm hai phân số tối giản biết hiệu của chúng là 3/196, các tử tỉ lệ với 3 và 5; các mẫu tương ứng tỉ lệ với 4 và 7
Tìm 2 phân số tối giản. Biết hiệu của chúng là \(\frac{3}{196}\)và các tử tỉ lệ với 3, 5 và các mẫu tỉ lệ với 4, 7.
nếu x là số âm và thỏa mãn \(\frac{9x}{4}\)= \(\frac{16}{x}\) thì x bằng bao nhiêu? ( nhập kết quả dưới dạng phân số tối giản)
\(\frac{9x}{4}=\frac{16}{x}\Rightarrow9x^2=36\Rightarrow x^2=4\Rightarrow x=\pm2\)
tìm 3 phân số tối giản biết tổng của chúng là -2 , tử của chúng tỉ lệ với 3,4,5 mẫu tỉ lệ với 1/2; 1/3;1/4
Gọi tử của ba phân số tối giản là a,b,c
mẫu của ba phân số tối giản là ,d,e,f
Ta có : Tử của ba phân số tối giản tỉ lệ với 3,4,5
=> \dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}3a=4b=5c
mà tổng của chúng là -2 => a+b+c =-2
Áp dụng t/c của dãy tỉ só bằng nhau ,có ;
\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}3a=4b=5c =\dfrac{a+b+c}{3+4+5}=-\dfrac{2}{12}=-\dfrac{1}{6}=3+4+5a+b+c=−122=−61
\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=-\dfrac{1}{6}\Rightarrow a=-\dfrac{1}{2}\\\dfrac{b}{4}=\dfrac{-1}{6}\Rightarrow b=-\dfrac{2}{3}\\\dfrac{c}{5}=-\dfrac{1}{6}\Rightarrow c=-\dfrac{5}{6}\end{matrix}\right.⇒⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧3a=−61⇒a=−214b=6−1⇒b=−325c=−61⇒c=−65
Tương tự ta tìm được mẫu của ba phân số tối giản lần lượt là d = -\dfrac{12}{13};e=-\dfrac{8}{13};f=-\dfrac{6}{13}−1312;e=−138;f=−136
Vậy ba phân số tối giản là \dfrac{a}{d}=da= \dfrac{6}{13};\dfrac{b}{e}=\dfrac{16}{39};\dfrac{c}{f}=\dfrac{5}{13}136;eb=3916;fc=135
tìm 3 phân số tối giản biết tổng của chúng là -2 , tử của chúng tỉ lệ với 3,4,5 mẫu tỉ lệ với 1/2; 1/3;1/4
Phân số a / b tối giản với b > 0 không đổi khi cộng tử với 50 và trừ mẫu đi 112 . Vậy phân số a/b là ...
Tìm x thỏa mãn : \(\frac{x}{2}\)= 1 + \(\frac{2}{3}\)
. Nhập x bằng phân số tối giản
\(\frac{x}{2}=1+\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{5}{3}\)
\(\Rightarrow x.3=2.5=10\Rightarrow x=\frac{10}{3}\)
Vậy........