Những câu hỏi liên quan
PD
Xem chi tiết
PD
4 tháng 12 2016 lúc 11:14

Ta có:\(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\)\(\Rightarrow\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}\)

Đặt \(\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}=k\)

\(\Rightarrow x=4k-1,y=2k+2,z=3k-2\)

Theo đề ta có:xyz=12

\(\Rightarrow\left(4k-1\right)\left(2k+2\right)\left(3k-2\right)=12\)

\(\Rightarrow\left(8k^2+8k-2k-2\right)\left(3k-2\right)=12\)

\(\Rightarrow\left(8k^2+6k-2\right)\left(3k-2\right)=12\)

\(\Rightarrow\left(8k^2+6k\right)\left(3k-2\right)-2\left(3k-2\right)\)

\(\Rightarrow24k^3-16k^2+18k^2-12k-6k+4=12\)

\(\Rightarrow24k^3+2k^2-18k=8\)

\(\Rightarrow24k^3+2k^2-18k-8=0\)

\(\Rightarrow\left(k-1\right)\left(24k^2+26k+8\right)=0\)(làm hơi tắt)

TH1:k-1=0,k=1

TH2:\(\left(24k^2+26k+8\right)=0\)

\(24\left(k+\frac{13}{24}\right)^2+\frac{23}{24}>0\)(vô lí)

\(\Rightarrow k=1\)

\(\Rightarrow x=3,y=4,z=1\)

Bình luận (1)
PD
4 tháng 12 2016 lúc 10:50

các bạn ko cần làm đâu mình bít giải rồi

Bình luận (0)
LS
Xem chi tiết
PD
Xem chi tiết
PD
2 tháng 12 2016 lúc 20:12

đề sai nói mình nha mấy thánh môn toán

Bình luận (0)
PD
2 tháng 12 2016 lúc 20:23

ai giúp đi

Bình luận (0)
PD
3 tháng 12 2016 lúc 15:17

Giúp với tối phải nộp rồikhocroigianroihuhukhocroioho

Bình luận (0)
H24
Xem chi tiết
TL
8 tháng 4 2017 lúc 21:10

Đặt \(\frac{4}{x+1}=\frac{2}{y-3}=\frac{3}{z+2}=\frac{1}{k}\)

Suy ra: x+1=4k  ->  x=4k-1

           y-3=2k   ->  y=2k+3

            z+2=3k ->  z=3k-2

Tiếp tuc: 12=xyz=(4k-1)(2k+3)(3k-2)  . Tự làm nốt nhé, mình k thích khai triển tung tóe đâu

LÀM ĐC THÌ BẤM, KO ĐC THÌ THÔI

Bình luận (0)
H24
9 tháng 4 2017 lúc 15:12

toi lam duoc den day roi con doan sau thi khong lam duoc

Bình luận (0)
TK
25 tháng 10 2017 lúc 13:25

ta có: đặt bằng k

x=4k+1

y=2k+2

z=3k+2

mà:xyz=12

(4k+1)+(2k+2)-(3k+2)

Bình luận (0)
MT
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
GG

a) Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Khi đó : \(\left(3k\right)^2+2.\left(4k\right)^2+4.\left(5k\right)^2=141\)

\(\Leftrightarrow141k^2=141\)

\(\Leftrightarrow k^2=1\)

\(\Leftrightarrow k=\pm1\)

TH1 \(\hept{\begin{cases}x=3\\y=4\\z=5\end{cases}}\)

TH2 \(\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)

Vậy.....

Bình luận (0)
 Khách vãng lai đã xóa
H24
9 tháng 1 2020 lúc 15:07

a)

Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x^2}{3^2}=\frac{2y^2}{2.4^2}=\frac{4z^2}{4.5^2}=\frac{x^2+2y^2+4z^2}{9+32+100}=\frac{141}{141}=1\)

\(\frac{x}{3}=1\Rightarrow x=3.1=3\)

\(\frac{y}{4}=1\Rightarrow y=4.1=4\)

\(\frac{z}{5}=1\Rightarrow z=5.1=5\)

Vậy x = 3

y=4

z=5

Bình luận (0)
 Khách vãng lai đã xóa
H24
9 tháng 1 2020 lúc 15:17

b) xem lại đề

c) theo đề bài ta có:

\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+7y-1-5y}{4x-5x}=\frac{2y}{-x}=\frac{1+5y-1-3y}{5x-12}\)

\(=\frac{2y}{5x-12}\)

\(\Rightarrow\frac{2y}{-x}=\frac{2y}{5x-12}\left(y=0\right)\) thay vào thì đề bài k thỏa mãn

*Nếu y khác 0

\(\Rightarrow-x=5x-12\)

\(\Rightarrow x=2\)

\(\frac{1+3y}{12}=\frac{2y}{-2}=-y\Rightarrow1+3y=-12y\Rightarrow1=-15y=\frac{-1}{15}\)

Vậy x = 2

y= -1/15

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
KN
25 tháng 10 2020 lúc 20:51

\(ĐK:x,y,z\ne0\)

Đặt \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=a\)

\(\Rightarrow x-\frac{1}{y}=\frac{a}{6};y-\frac{1}{z}=\frac{a}{3};z-\frac{1}{x}=\frac{a}{2}\)\(\Rightarrow\frac{a^3}{36}=xyz-\frac{1}{xyz}-x+\frac{1}{y}-y+\frac{1}{z}-z+\frac{1}{x}=a-\frac{a}{6}-\frac{a}{3}-\frac{a}{2}=0\)suy ra a = 0

Nếu xyz = 1 thì x = y = z = 1 (thỏa mãn)

Nếu xyz = -1 thì x = y = z = -1 (thỏa mãn)

Vậy nghiệm của hệ phương trình (x; y; z) là: (1; 1; 1),(-1; -1; -1).

Bình luận (0)
 Khách vãng lai đã xóa
DT
10 tháng 2 2020 lúc 22:16

Nhìn lozic qué bạn ey!!!

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết