cho a/b = c/d chứng minh
a] a/a-b=c/c-d
b] a/b=a+c/b+d
c] a/3a+b=c/3c+d
Cho mình cách giải cảm ơn mn
Chứng minh a/a-b=c/c-d biết a/b=c/dCho ab=cd chứng minh rằng:a) aa−b =cc−db) ab=a+cb+dc)a3a+b=c3c+bd) a.cb.c=a2+c2b2+d2e) a.bc.d=a2−b2c2−d2f) a.bc.d=(a−b)2(c−d)2
cho a,b,c > 0
chứng minh :\(\frac{a^2}{b+3c}+\frac{b^2}{c+3a}+\frac{c^2}{a+3b}\ge\frac{a+b+c}{4}\)
giải hộ mình cái, cảm ơn nhiều.
Áp dụng BĐT Cauchy-Schwarz dạng phân thức là có ngay mà?
\(\frac{a^2}{b+3c}+\frac{b^2}{c+3a}+\frac{c^2}{a+3b}\ge\frac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\frac{a+b+c}{4}\)
cho a/b=c/d chứng minh tỉ lệ thức bằng nhau
a, ( b+d ) c = ( a+c ) d
b, ( 2x - c ) ( 2b + d) = ( 2b - d ) ( 2a + c )
c , ( 3a + 5 c ) ( b - 3d ) = ( 3b + 5d ) ( a - 3c)
mn giúp mình với ạ ! mình đang cần gấp
a) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\left(b+d\right)c=\left(a+c\right)d\)
\(\Rightarrow dpcm\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{2a}{2b}=\dfrac{c}{d}=\dfrac{2a+c}{2b+d}=\dfrac{2a-c}{2b-d}\)
\(\Rightarrow\left(2b-d\right)\left(2a+c\right)=\left(2a-c\right)\left(2b+d\right)\)
\(\Rightarrow dpcm\)
c) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{3a}{3b}=\dfrac{5c}{5d}=\dfrac{3a+5c}{3b+5d}=\dfrac{a-3c}{b-3d}\)
\(\Rightarrow\left(b-3d\right)\left(b-3d\right)=\left(3b+5d\right)\left(a-3c\right)\)
\(\Rightarrow dpcm\)
Đính chính câu c
\(\Rightarrow\left(3a+5c\right)\left(b-3d\right)=\left(3b+5d\right)\left(a-3c\right)\)
Toán nâng cao:
a) Cho a/b = c/d. Chứng minh: a/3a + b = c/3c + d
b) Cho a/b = c/d. Chứng minh rằng: (a - b)2/(c - d)2 = ab/cd
c) Tìm x, y, z biết: x/3 = y/7 = z/2 và 2x2 + y2 + 3z2 = 316
a, Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của day tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
\(=>\dfrac{a}{c}=\dfrac{3a+b}{3c+d}=>\dfrac{a}{3a+b}=\dfrac{c}{3c+d}=>\left(đpcm\right)\)
Bài 1:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
(ĐPCM)
b, Ta có \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=x\)
Xét \(x^2=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)
=>(đpcm)
Cho a/b = c/d Chứng minh:
a. 3a+4b / 3a-4b = 3c+4d / 3c - 4d
b. 5a+2c / 4a = 5b+2d / 4b
c. (a+b)2 / (c+d)2 = a2+b2 / c2+d2
CẢM ƠN.
a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a+4b}{3c+4d}=\frac{3a-4b}{3c-4d}.\)
\(\Rightarrow\frac{3a+4b}{3a-4b}=\frac{3c+4d}{3c-4d}\)
b) ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{5a}{5b}=\frac{2c}{2d}=\frac{4a}{4b}\)
Lại có: \(\frac{5a}{5b}=\frac{2c}{2d}=\frac{5a+2c}{5b+2d}\)
\(\Rightarrow\frac{4a}{4b}=\frac{5a+2c}{5b+2d}\Rightarrow\frac{5a+2c}{4a}=\frac{5b+2d}{4b}\)
c) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Lại có: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\frac{\left(a+b^2\right)}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
cho tỷ lệ thức a/b=c/d.CMR
a)a+b/b=c+d/d.
b)a/a+b=c/c+d
c)2a+3c/2b+3b=2a-3a/2b-3b
Các bạn giải bằng cách đặt theo k giúp mk nha! Thanks mn nhiều!!!!
có a+b/b=k=>a+b=b.k=>b.k/b=k
c+d/d=k=>c+d=d.k=>d.k/d=k
=>a+b/b=c+d/d
Cho a/b=c/d. Chứng minh a/3a+b=c/3c+d (3 cách)
\(Cách\)\(1:\)
\(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow\text{a=bk;c=dk (1)}\)
Ta có:\(\frac{a}{3a+b}=\frac{c}{3c+d}\)(thay(1) vào)
Ta dc:\(\frac{bk}{3bk+b}=\frac{bk}{b\left(3k+1\right)}=\frac{k}{3k+1}\left(2\right)\)(tiếp tục thay 1 vào)
\(\frac{dk}{3dk+1}=\frac{k}{3k+1}\)
\(Từ\)\(\left(1\right);\left(2\right)\RightarrowĐPCM\)
\(Cách\)\(2:\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow3ac+ad=3ac+bc\)
\(\Rightarrow\text{a(3c+d)=c(3a+b)}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\left(ĐPCM\right)\)
Chúc bn hok tốt!!!
cho a/b =c/d .chứng minh a/3a+b=c/3c+d cho mình biết cách làm lun nhen thanks
Bài 2:chứng tỏ nếu \(\frac{a}{b}=\frac{c}{d}\)
c) \(\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)
giải giúp với mai mình nộp rồi cảm ơn mình tick cho
Bìa này đâu cần : \(\frac{a}{b}=\frac{c}{d}\)
Ta chứng minh ngược :
\(\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\left(3c+2016b\right)\left(c-2d\right)=\left(3c+2016d\right)\left(a-2b\right)\)
\(\Rightarrow3ac-4032bd=3ac-4032bd\)( hiển nhiên đúng )
\(\Rightarrow\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)( đúng )
AB = CD và thành 3a + 2016 + ab =3434
= 3c + 3434 +cd= 4354
ds ________________________