x/4=y/3 và x+y =24 tìm x ,y thuộc Z
giúp mình với
\(\dfrac{-3}{6}\) = \(\dfrac{x}{-2}\) = \(\dfrac{-18}{y}\) = \(\dfrac{-z}{24}\)
Tìm x,y,z
giúp mình với ạ
\(\Leftrightarrow\dfrac{x}{-2}=\dfrac{1}{-2}=\dfrac{-18}{y}=\dfrac{z}{-24}\)
=>x=1; y=36; z=12
2 số x và y, biết x/y= y/-5 và x-y=16. Cho tỉ lệ thức x/3=y/4 và x.y=12. Tìm x,y cho 3 số x,y,z thỏa mãn x.y=-30, y.z=42 và z-x=-12. Tính x,y,z
giúp vs ak
Bài 2:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: xy=12
\(\Leftrightarrow12k^2=12\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
1.Tìm x,y,z biết :
a)2x/3 = 3y/4 =4z/5 và x+y+z = 49
b)x/5 = y/3= và x2 - y2 =4
c)x/y+z+1 =y/z+x+1 =z/x+y-2= x+y+z
Giúp mik vs ạ , cảm ơn mn
a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)
Vậy: (x,y,z)=(18;16;20)
b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Leftrightarrow16k^2=4\)
\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
Trường hợp 1: \(k=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Suy ra :
\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)
b)
\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)
Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$
Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$
c)
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)
Suy ra :
\(2x=y+z+1\Leftrightarrow y+z=2x-1\)
Mặt khác :
\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(2y=x+z+1=z+\dfrac{3}{2}\)
Mà \(y+z=0\Leftrightarrow z=-y\)
nên suy ra: \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)
tìm x,y,z biết : y+x+1/x=x+z+2/y=z+y-3=1/x+y+z
giúp mik nhé
Cho 3x-2y/4=4y-3z/2=2z-4x/3
Và x-2y+3z=8
Tìm x,y,z
Giúp mình với nhé
Tìm x, y thuộc Z biết:
a,(x-1):7=3:(y+3)
b,x:5=4:3 và x+y=24
c,x:3=y:(-4)
d,x-3:x-2 là số nguyên âm
e, x+7:3x+1 là số nguyên
giúp mik với nha mik đag cần gấp
đúng mình sẽ tik cho
Cho dãy tỉ số bằng nhau 2x+y+3z/x+2z = 3x+y/x+2y = 2x+y+z/2y+z
Tính giá trị của biểu thức P = (1 + x/y )(1 + y/z )(1 + z/x ) với các mẫu số khác 0, x ≠ z
GIÚP MÌNH VS MÌNH ĐANG CẦN GẤP. THANK!
E = x - 5/ x + 2 (x thuộc Z và x không bằng -2)
Tìm x sao cho E thuộc Z
Giúp mình gấp!!
Để E là số nguyên thì \(x-5⋮x+2\)
\(\Leftrightarrow x+2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-1;-3;5;-9\right\}\)
E = x - 5/ x + 2 (x thuộc Z và x không bằng -2)
Tìm x sao cho E thuộc Z
Giúp mình đi mà :<
Để E là số nguyên thì \(x-5⋮x+2\)
\(\Leftrightarrow x+2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-1;-3;5;-9\right\}\)