a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
Chứng minh rằng phân số n+1/2n+3 là tối giản (n ∈ N)
Giả sử n+1 chia hết cho x --> 2n+2 chia hết cho x
2n+3 chia hết cho x
==> (2n+3)- (2n+2) chia hết cho x ==> 1 chia hết cho x tức là x=1 nên n+1 và 2n+3 chỉ có ước chung là 1 vì vậy mà phân số trên tối giản
Thiếu đề bài bạn ơi bạn đọc lại coi nào
Bài 1: Cho phân số n - 1 / n - 2 ( n thuộc Z ; n khác 2 ). Tìm n để A là phân số tối giản
Bài 2: Với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản: A = 2n + 1 / 2n + 3
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
chứng minh 2n+3/n+1 là phân số tối giản
Goi UCLN (2n+3;n+1)=d
ta có: 2n+3 chia hết d;n+1 chia hết d
=>(2n+3) - (n+1) chia hết d
=>2n+3 - 2(n-1) chia hết d
=>2n+3 - 2n+2 chia hết d
=>2n - 2n + 3 - 2chia hết d
=>1 chia hết d
=>1=d
vậy\(\frac{2n+3}{n+1}\) là phân số tối giản
Gọi UCLN( 2n+3; n+1 ) là d, ta có: (d thuộc N* )
2n+3 chia hết cho d và n+1 chia hết cho d
=> 2n+3 - n-1 chia hết cho d
=> 2n+3 - 2n-2 chia hết cho d
=> 1 chia hết cho d
=> d=1
Vậy 2n+3/n+1 luôn là phân số tối giản với mọi số tự nhiên n.
Với mọi STN n chứng minh các phân số sau là phân số tối giản :A=2n+1/2n+3
Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath
chứng minh với mọi số tự nhiên n thì phân số n+1 trên 2n+3 là phân số tối giản
chứng minh với mọi số tự nhiên n thì phân số n+1 trên 2n+3 là phân số tối giản
Gọi d=UCLN(n+1;2n+3)
\(\Leftrightarrow2n+3-2n-2⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UCLN(n+1;2n+3)=1
=>n+1/2n+3 là phân số tối giản
chứng minh phân số n+3/2n+3(n thuộc n*)là phân số tối giản
Sai đề, với n chia hết cho 3 thì điều chứng mình sai hoàn toán
OLM duyệt