\(S=5+5+...+5^{2006}\)
a.Chứng minh Schia hết cho 126
cho S=5+5^1+5^2+.....+5^2006
tinhS
CM Schia hết cho 126
cho S=5+52+53+...+52004. chứng minh Schia hết cho 126 và chia hết cho 65.
thank
Có: 5 + 52 + 53 + 54 + 55 + 56 = 5(1 + 53) + 52(1 + 53) + 53(1 + 53)
= 5. 126 + 52.126 + 53.126
( 5 + 52 + 53 + 54 + 55 + 56 chia hết cho 126.
0,5
S = (5 + 52 + 53 + 54 + 55 + 56) + 56(5 + 52 + 53 + 54 + 55 + 56) + … + 51998(5 + 52 + 53 + 54 + 55 + 56).
Tổng trên có (2004: 6 =) 334 số hạng chia hết cho 126 nên nó chia hết cho 126.
0,5
Có: 5 + 52 + 53 + 54 = 5+ 53 + 5(5 + 53) = 130 + 5. 130.
( 5 + 52 + 53 + 54 chia hết cho 130 .
0,5
S = 5 + 52 + 53 + 54 + 54 (5 + 52 + 53 + 54 ) + … + 52000(5 + 52 + 53 + 54 )
Tổng trên có (2004: 4 =) 501 số hạng chia hết cho 130 nên nó chia hết cho 130.
0,5
Có S chia hết cho 130 nên chia hết cho 65.
0,5
tích nha
Có S = ( 5 + 53 ) + ( 52 + 54 ) + .... + ( 52002 + 52004 )
= 1.( 5 + 53 ) + 5.( 5 + 53 ) + ... + 52001 ( 5 + 53 )
= 1 ( 5 + 125 ) + 5 ( 5 + 125 ) + ... + 52001 ( 5 + 125 )
= 1 . 130 + 5 . 130 + ... + 52001 . 130
= 130 ( 1 + 5 + ... + 52001 )
Vì 130 chia hết cho 65 => S chia hết cho 65
Cho S=5+52+53+...+596
a)Hãy chứng minh rằng: Schia hết 126
Tìm chữ số tận cùng
a,S=5+52+53+..........+596
S=(5+52+53+54+55+56)+.............+(591+592+593+594+595+596)
S=5.(1+5+52+53+54+55)+............+591.(1+5+52+53+54+55)
S=5.31.126+..............+591.31.126
S=(5.31+..............+591.31).126 chia hết cho 126(Đpcm)
b,5S=52+53+54+55+...............+597
5S-S=4S=597-5
\(S=\frac{5^{97}-5}{2}\)
Mà 597-5=(54)24.5-5=062524.5-5=....0625.5-5=..........3125-5=.........3120
=>S=.........3120:2
=>S=............0
Cho S= 5+5^2+5^3+...+5^2006. Tính S. Chứng minh S chia hết cho 126
Ta có
\(5S=5^2+5^3+..+5^{2007}=\left(5+5^2+5^3+..+5^{2006}\right)+5^{2007}-5\)
hay \(5S=S+5^{2007}-5\Rightarrow S=\frac{5^{2007}-5}{4}\)
mà
\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)..+\left(5^{2001}+5^{2004}\right)+\left(5^{2005}+5^{2006}\right)\)
hay \(S=126.5+126.5^2+126.5^3+126.5^7+...+126.5^{2001}+6.5^{2005}\)
mà rõ ràng \(126.5+126.5^2+126.5^3+126.5^7+...+126.5^{2001}\)chia hết cho 126
còn \(6.5^{2005}\) không chia hết cho 126 nên S không chia hết cho 126.
Cho S= 5+5^2+5^3+...+5^2006. Tính S. Chứng minh S chia hết cho 126
ko chia hết được bán nhé nên không chứng minh được
Ta có : S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + .... + ( 52003 + 52006 )
= 5( 1 + 53 ) + 52 ( 1 + 53 ) + 53 ( 1 + 53 ) + .... + 52003 ( 1 + 53 )
= 5 ( 1 + 125 ) + 52 ( 1 + 125 ) + 53 ( 1 + 125 ) + .... + 52003 ( 1 + 125 )
= 5.126 + 52 . 126 + 53.126 + ..... + 52003 . 126
= 126 ( 5 + 52 + 53 + .... + 52003 ) ⋮ 126
=> A ⋮ 126 ( đpcm )
Ta có : S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + .... + ( 52003 + 52006 )
= 5( 1 + 53 ) + 52 ( 1 + 53 ) + 53 ( 1 + 53 ) + .... + 52003 ( 1 + 53 )
= 5 ( 1 + 125 ) + 52 ( 1 + 125 ) + 53 ( 1 + 125 ) + .... + 52003 ( 1 + 125 )
= 5.126 + 52 . 126 + 53.126 + ..... + 52003 . 126
= 126 ( 5 + 52 + 53 + .... + 52003 ) ⋮ 126
=> A ⋮ 126 ( đpcm )
Cho S=5+5 mũ 2+5 mũ 3+5 mũ 4+... 5 mũ 96
a.Chứng minh rằng S chia hết cho 126
b. Tìm chữ số tận cùng của S
minh chi lam duoc phan b thoi thong cam nhe
co cac so luy thua cua 5 deu co tan cung la 5
=> cu 2 so cong lai bang mot so duoi 0
=> S co chan luy thua => S co tan cung la 0
Bạn Trần Xuân Trung viết có dấu giùm được ko
\(S=5+5^2+5^3+...+5^{96}\)
\(\Rightarrow S=\left[\left(5+5^3\right)+\left(5^5+5^7\right)+...+\left(5^{95}+5^{97}\right)\right]+\left[\left(5^2+5^4\right)+...+\left(5^{96}+5^{98}\right)\right]\)
\(\Rightarrow S=\left[5.\left(1+5^2\right)+5^5.\left(1+5^2\right)+...+5^{95}.\left(1+5^2\right)\right]+\left[5^2.\left(1+5^2\right)+...+5^{96}.\left(1+5^2\right)\right]\)
\(\Rightarrow S=\left[5.126+5^5.126+...+5^{95}.126\right]+\left[5^2.126+...+5^{96}.126\right]\)
\(\Rightarrow S=126.\left(5+5^2+5^3+5^4+...+5^{96}\right)⋮126\)
b) Vì \(\left(5+5^2+5^3+...+5^{96}\right)\) có 96 số hạng tất cả, mỗi số có lũy thừa của 5 nên sẽ có tận cùng là 5, nên tổng 96 số hạng có tận cùng bằng 0 ( vì số 96 là số chẵn ) => S có tận cùng là 0
Cho biểu thức S=5+52+53+......+596
CMR Schia hết cho 126
Tìm chữ số tận cùng của S
Ta có:
S = 5+52+53+...+596.
= (5+54)+(52+55)+...+(593+596)
= 5(1+53)+52(1+53)+...+593(1+53)
= 5.126+52.126+...+593.126
= (5+52+...+593).126:126
S = 5+52+53+...+596
5S = 52+53+...+596+597
5S - S = 4S = 597-5
\(\Rightarrow\)S = (597-5):4
597 có tận cùng là 5.
\(\Rightarrow\)597-5 có tận cùng là 0.
\(\Rightarrow\)(597-5):4 có tận cùng là 5.
\(\Rightarrow\)S có tận cùng là 5.
Cho S= 5+5^2+5^3+............+5^2006.Chứng minh S không chia hết cho 126
Vì S có 2006 số hạng nên ta chia S thành 334 nhóm mỗi nhóm có 6 số hạng và còn thừa 2 số hạng như sau:
S=5+52+[(53+56)+(54+57)+(55+58)]+.......+[(52001+52004)+(52002+52005)+(52003+52006)]=30+[53(1+125)+54(1+125)+55(1+125)]+.....+[52001(1+125)+52002(1+125)+52003(1+125)]=30+53.126+54.126+55.126+....+52001.126+52002.126+52003.126
=30+126(53+54+55+......+52001+52002+52003)=>S chia 126 dư 30
=> S không chia hết cho 126 (đpcm)
Cho S=5+5^2+5^3+......+5^2006
a;Tính S
b;Chứng minh S chia hết cho 126
b, ( 5^1 + 5^4 ) + ( 5^2 + 5^5 ) + .... + ( 5^2003 + 5^2006 )
= 5( 1 + 5^3 ) + 5^2( 1 + 5^3 ) + .... + 5^2003( 1 + 5^3 )
= 5 . 126 + 5^2 . 126 + .... + 5^2003 . 126
= 126 ( 5 + .... + 5^2003 )
=> chia hết cho 126
a ) S = 5 + 52 + .... + 52006
5S = 52 + 53 + ..... + 52007
4S = 5S - S = 52007 - 5
=> S = \(\frac{5^{2007}-5}{4}\)
b thì bạn gộp lại nhé , nếu k giải đk ib cho mình