Tìm số nguyên tố p sao cho P2 + 1 va p4 +1 là số nguyen tố. tìm số p giúp minh nha
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm 4 số nguyên tố liên tiếp và tăng dần p1 < p2 < p3 < p4 sao cho số q = p1 + p2 + p3 + p4 cũng là một số nguyên tố.
p1=2
p2=3
p3=5
p4=7
p1+p2+p3+p4=2+3+5+7=17 là số nguyên tố
đúng thì tk nha
Với p1=2 =>p2=3,p3=5,p4=7(do p1<p2<p3<p4) (1)
Với p1>2 suy ra tất cả chúng đều lẻ.Suy ra tổng của chúng là số chẵn lớn hơn 2 nên chia hết cho 2 hay là hợp số
Suy ra chúgn lần lượt là.........(1)
mik thiếu chỗ tổng 3 số như Đặng Yến Ngọc nhsa
a,tìm các số nguyên tố p1,p2,p3,p4,p5 thỏa mãn: p2-p1=p3-p2=p4-p3=p5-p4=6
b, tìm các số nguyên tố a,b,c biết: abc<ab+bc+ca
mọi người giúp mk nha mk cần gấp lắm
tìm cac số nguyên tố p1,p2 ,p3 ,p4 ,p5 sao cho p2-p1=p3-p2=p4-p3=p5-p4=6
Tìm p1,p2,p3,p4,p...p8 là các số nguyên tố
sao cho p1^2+p2^2+p3^2+...+p7^2=p8^2
1) Tìm số tự nhiên nhỏ nhất chia cho 5 dư 1, chia cho 7 dư 3.
2) Tìm số nguyên tố p sao cho p2 +4 và p2– 4 đều là số nguyên tố.
Gọi số cần tìm là a ( a ∈ N)
Ta có:
a chia 5 dư 1
⇒ a+4 chia hết cho 5
a chia 7 dư 3
⇒ a+4 chia hết cho 7
Mà (5,7) = 1
⇒ a+4 chia hết cho 35
Vì a là số tự nhiên nhỏ nhất
⇒a+4 = 35
⇒a=35-4
⇒a=31
Vậy số tự nhiên cần tìm là 31
1)Gọi số x là số tự nhiên nhỏ nhất cần tìm, theo đề bài ta có :
x=5a+1 ; x=7b+3
Nên 5a+1=7b+3
5a-7b=2
Ta thấy 5.6-7.4=2
Nên a=6; b=4
Vậy x=31
2) Theo đề bài : p2 + 4 và p2 - 4 đều là số nguyên tố
⇒ (p2 + 4) và (p2 - 4) ⋮ 1 và chính nó
⇒ (p2 + 4) và (p2 - 4) ϵ {1;2;3;5;7;11;13...}
Ta thấy khi (p2 + 4) = 13 và (p2 - 4) = 5 thì p=3
Vậy p=3
Bài 2 (3,5 điểm)
1) Tìm số tự nhiên nhỏ nhất chia cho 5 dư 1, chia cho 7 dư 3.
2) Tìm số nguyên tố p sao cho p2 +4 và p2– 4 đều là số nguyên tố.
1: Gọi số cần tìm là a
Theo đề, ta có: a-1 chia hết cho 5 và a-3 chia hết cho 7
mà a nhỏ nhất
nên a=31
2: TH1: p=3
=>p^2+4=13 và p^2-4=5
=>NHận
Th2: p=3k+1
p^2-4=(3k+1-2)(3k+1+2)
=3(k+1)(3k-1)
=>Loại
TH3: p=3k+2
=>p^2-4=9k^2+12k+4-4
=9k^2+12k=3(3k^2+4k)
=>Loại
Tìm 5 số nguyên tố p1; p2; p3; p4; p5 thỏa mãn:
p2-p1=p3-p2=p4-p3=p5-p4=6.
=> p1+6=p2
p1+12=p3
p1+18=p4
p1+24=p5
Vì p1 là SNT nên có dạng 5k,5k+1,5k+2,5k+3, 5k+4
Nếu p1=5k mà p1 là SNT
=> p1=5
Thay p1 = 5 tính được mấy cái kia đúng, chọn
Nếu p1=5k+1
=> p5=5k+1+24=5k+25=5(k+5) chia hết cho 5
Mà 5k+25>5
=> p5 là hợp số ( trái với đề, loại )
....
Thay lần các ttrg hợp còn lại 5k+2,5k+3,5k+4 vào p1+18,p1+12,p1+6 để loại
Vậy p1=5
\(\text{Tìm 5 số nguyên tố p1,p2,p3,p4,p5 thỏa mãn p2-p1=p3-p2=p4-p3=p5-p4=6}\)
p1 = 5
p2 = 11
p3 = 17
p4 = 23
p5 = 29
p1 = 5
p2 = 11
p3 = 17
p4 = 23
p5 =29
p1 = 5
p2 = 11
p3 = 17
p4 = 23
p5 =29