tim GTNN cua bieu thuc :
a) A= I x+1I + 1,7
b) B= I x-2/3I +3/7
c) C= 5+ -8/ 4x I5x+7I 24
tim GTNN cua bieu thuc :
a) A= I x+1I + 1,7
b) B= I x-2/3I +3/7
c) C= 5+ -8/ 4x I5x+7I 24
tim GTNN cua bieu thuc :
a) A= I x+1I + 1,7
b) B= I x-2/3I +3/7
c) C= 5+ -8/ 4x I5x+7I 24
a) |x+1|>/0
dấu "=" xảy ra khi x=-1
vậy Min A=1,7 khi x=-1
b)|x-2/3|>/0
dấu"=" xảy ra khi x=2/3
vậy Min A=3/7 khi x=2/3
c) bạn viết đề câu c rõ chút đc ko
a, Amin = 1,7 tại x = -1
b, Bmin = 3,7 tại x = \(\frac{2}{3}\)
tim gia tri lon nhat cua bieu thuc :
a) C= 5+ 15/ 4 I 3x+7 I +3
b) D= 2 I 7x+5I +11/ I 7x+5I +4
tim GTNN cua bieu thuc :
a) A= I x+1I + 1,7
b) B= I x-2/3I +3/7
c) C= 5+ -8/ 4x I5x+7I 24
tim gia tri lon nhat cua bieu thuc :
b) D= 2 I 7x+5I +11/ I 7x+5I +4
tim GTNN cua bieu thuc :
c) C= 5+ -8/ 4x I5x+7I 24
tim gia tri lon nhat cua bieu thuc :
b) D= 2 I 7x+5I +11/ I 7x+5I +4
tim GTNN cua bieu thuc :
c) C= 5+ -8/ 4x I5x+7I 24
Tìm GTNN của:
a) A= I x - 7 I + 3 - x
b) B= I x+ 7I + I x + 3I + I x + 1I
c) C= I 2 - xI + I 5 - xI
a) \(\left|x-7\right|\ge x-7\Rightarrow A\ge x-7+3-x=-4\)
Dấu "=" xảy ra <=> \(x-7\ge0\Leftrightarrow x\ge7\)
b)\(\left|x+7\right|\ge x+7;\left|x+3\right|\ge0;\left|x+1\right|\ge-x-1\Rightarrow B\ge x+7+0-x-1=6\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+7\ge0\\x+3=0\\x+1\le0\end{cases}\Leftrightarrow x=-3}\)
c) \(\left|2-x\right|\ge x-2;\left|5-x\right|\ge5-x\Rightarrow C\ge x-2+5-x=3\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}2-x\le0\\5-x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge2\\x\le5\end{cases}}\)
1) Tim GTNN cua bieu thuc sau
a) M = x^2 + 4x + 9
b) N = x^2 - 20x +101
5) Tim GTLN cua bieu thuc sau
a) C = -y^2 + 6y -15
b) B = -x^2 + 9x - 12
c) D = 3x - x^2
Bài 1:
a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)
Dấu '=' xảy ra khi x=-2
b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)
Dấu '=' xảy ra khi x=10
Tim gtnn cua bieu thuc A=(2x^2+4x-1)/(x^2+1)
Tim GTNN cua bieu thuc A= 4x^2 + 12x + 8
Ta có: \(A=4x^2+12x+9-1\)
<=> \(A=\left(2x+3\right)^2-1\)
<=> \(A=\left(2x+3-1\right)\left(2x+3+1\right)\)
<=> \(A=\left(2x+2\right)\left(2x+4\right)\)
<=> \(A=4\left(x+1\right)\left(x+2\right)\ge4.1.2=8\)
Vậy Amin = 8 khi x=0
trần gia bảo bái phục bái phục!
Lời giải
Tự c/m: \(\left(a+b\right)^2=a^2+2ab+b^2\) (phân tích thành (a+b) . (a+b) rồi phá tung cái ngoặc ra)
Ta có: \(A=4\left(x^2+3x+2\right)\) (đặt thừa số chung)
\(=4\left[x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right]\)
\(=4\left[\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\right]=4\left(x+\frac{3}{2}\right)^2-1\ge-1\) (do \(\left(x+\frac{3}{2}\right)^2\ge0\))
Dấu "=" xảy ra khi x + 3/2 = 0 tức là x = -3/2
Vậy Min (GTNN) A = -1 khi và chỉ khi x = -3/2