Những câu hỏi liên quan
Xem chi tiết
TT
4 tháng 1 2022 lúc 14:56

a) \(\dfrac{5}{x}=\dfrac{-10}{12}.\Rightarrow x=-6.\)

b) \(\dfrac{4}{-6}=\dfrac{x+3}{9}.\Rightarrow x+3=-6.\Leftrightarrow x=-9.\)

c) \(\dfrac{x-1}{25}=\dfrac{4}{x-1}.\left(đk:x\ne1\right).\Leftrightarrow\dfrac{x-1}{25}-\dfrac{4}{x-1}=0.\)

\(\Leftrightarrow\dfrac{x^2-2x+1-100}{25\left(x-1\right)}=0.\Leftrightarrow x^2-2x-99=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=11.\\x=-9.\end{matrix}\right.\) \(\left(TM\right).\)

 

 

Bình luận (0)
HN
Xem chi tiết
NT
5 tháng 1 2023 lúc 21:51

a: \(\Leftrightarrow\dfrac{x}{-4}=\dfrac{21}{y}=\dfrac{z}{-80}=\dfrac{3}{4}\)

=>x=-3; y=28; z=-60

b: 5/12=x/-72

=>x=-72*5/12=-6*5=-30

c: =>x+3=-5

=>x=-8

Bình luận (0)
PJ
Xem chi tiết
H24
11 tháng 1 2022 lúc 22:23

a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)

Ta có bảng:

x-3-1-515
2y-6-5-151
x2-248
y\(\dfrac{1}{2}\left(loại\right)\)\(\dfrac{5}{2}\left(loại\right)\)\(\dfrac{11}{2}\left(loại\right)\)\(\dfrac{7}{2}\left(loại\right)\)

Vậy không có x,y thỏa mãn đề bài 

b, tương tự câu a

 \(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)

Rồi làm tương tự câu a

\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)

Rồi làm tương tự câu a

 

Bình luận (0)
NT
Xem chi tiết
NT
19 tháng 7 2021 lúc 10:53

a, Ta có : 

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)

\(\Rightarrow x=11;y=17;z=23\)

b, Đặt \(\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\Rightarrow xyz=810\)

\(\Rightarrow2k.3k.5k=810\Leftrightarrow30k^3=810\Leftrightarrow k^3=27\Leftrightarrow k=3\)

\(\Rightarrow x=6;y=9;z=15\)

Bình luận (0)
TG
19 tháng 7 2021 lúc 10:58

a) Ta có: \(\dfrac{x-1}{2}=\dfrac{2x-2}{4};\dfrac{y-2}{3}=\dfrac{3y-6}{9};\dfrac{z-3}{4}\)

Áp dụng t/c dtsbn:

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}=5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=5\\\dfrac{y-2}{3}=5\\\dfrac{z-3}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=12\end{matrix}\right.\)

b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

xyz = 810

=> 2k.3k.5k = 810

=> k = 3

\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)

Bình luận (0)
NT
19 tháng 7 2021 lúc 11:45

a) Ta có: \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)

nên \(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)

mà 2x+3y-z=50

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)

Do đó:

\(\left\{{}\begin{matrix}x-1=10\\y-2=15\\z-3=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)

b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

Ta có: xyz=810

\(\Leftrightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\)

\(\Leftrightarrow k=3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot3=6\\y=3k=3\cdot3=6\\z=5k=5\cdot3=15\end{matrix}\right.\)

Bình luận (0)
TL
Xem chi tiết
AH
30 tháng 9 2021 lúc 17:30

Lời giải:

a. Áp dụng TCDTSBN:

\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)

$\Rightarrow x=-3.2=-6; y=-3.5=-15$

b. Áp dụng TCDTSBN:

$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$

$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$

$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$

$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$

c.

$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$

$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$

$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$

$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$

Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$

Bình luận (1)
H24
Xem chi tiết
NT
28 tháng 6 2023 lúc 20:09

a: Áp dụng tính chất của DTSBN, ta được:

x/5=y/2=(x-y)/(5-2)=9/3=3

=>x=15; y=6

b: =>(x-3)/12=3/(x-3)

=>(x-3)^2=36

=>(x-9)(x+3)=0

=>x=9 hoặc x=-3

c; x/2=y/3

=>x/10=y/15

y/5=z/4

=>y/15=z/12

=>x/10=y/15=z/12=(x-y-z)/(10-15-12)=-49/-17=49/17

=>x=490/17; y=735/17; z=588/17

Bình luận (0)
YC
Xem chi tiết
NT
23 tháng 2 2023 lúc 22:26

a: 2x-3y-4z=24

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)

=>x=-6/7; y=-36/7; z=-18/7

b: 6x=10y=15z

=>x/10=y/6=z/4=k

=>x=10k; y=6k; z=4k

x+y-z=90

=>10k+6k-4k=90

=>12k=90

=>k=7,5

=>x=75; y=45; z=30

d: x/4=y/3

=>x/20=y/15

y/5=z/3

=>y/15=z/9

=>x/20=y/15=z/9

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)

=>x=500; y=375; z=225

Bình luận (0)
NT
Xem chi tiết
NT
16 tháng 7 2021 lúc 13:52

undefined

Bình luận (2)
AH
Xem chi tiết
MH
5 tháng 10 2021 lúc 19:15

a) \(\dfrac{x}{y}=\dfrac{9}{7}\)\(\dfrac{x}{9}=\dfrac{y}{7}\)

\(\dfrac{y}{z}=\dfrac{7}{3}\)\(\dfrac{y}{7}=\dfrac{z}{3}\)

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)

\(\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)

Bình luận (0)
NT
5 tháng 10 2021 lúc 22:21

c: Ta có: 5x=8y=20z

nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}=\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{40}}=120\)

Do đó: x=24; y=15; z=6

Bình luận (0)