Rút gọn biểu thức :
a. (2x+1)^2 +(2x-1)^2 -2(1+2x)(2X-1)
B (x-1)^3 -(x+2)(x^2-2X+4)+3(x-1)(x+1)
a)(x+3)(x-1)-x(x-5) b)(2x-3)(2x+3)-4(x+2)^2 c)(x-1)^3-(x+2)(x^2-2x+4)+3x^2 Rút gọn biểu thức
a) \(\left(x+3\right)\left(x-1\right)-x\left(x-5\right)=x^2+2x-3-x^2+5x=7x-3\)
b) \(\left(2x-3\right)\left(2x+3\right)-4\left(x+2\right)^2=4x^2-9-4x^2-16x-16=-16x-25\)
c) \(=x^3-3x^2+3x-1-x^3-8+3x^2=3x-9\)
Rút gọn các biểu thức sau:
a) (x-2)(x+3)+(1-x)(x+4)
b) (2x-3)^2-(2x-1)(2x+1)
c) (2x-8)(x+3)-(x-10)(2x+1)
d) (x+2)^3-(x-1)^3-4
Bài 1: Rút gọn các biểu thức sau:
a, A = (x-2).(2x-1) - 2x (x+3)
b, B = (3x-2).(2x+1) - (6x-1).(x+2)
c, C = 6x.(2x+3) - (4x-1).(3x-2)
d, D = (2x+3).(5x-2)+(x+4).(2x-1) - 6x.(2x-3)
Bài 2: Chứng tỏ rằng các đa thức không phụ thuộc vào biến.
a, 2x(3x-5).(x+11) - 3x.(2x+3).(x+7)
b, (x2+5x-6).(x-1) - (x+2).(x2-x+1) - x(3x-10)
c, (x2+x+1).(x-1) - x2(x+1) + x2 - 5
Bài 1
A= (x-2)(2x-1)-2x(x+3)=2x2-x-4x+2-2x2-6x=-11x+2
Bài 1:
a) \(A=\left(x-2\right)\left(2x-1\right)-2x\left(x+3\right)\)
\(A=2x^2-x-4x+2-2x^2-6x\)
\(A=-11x+2\)
b) \(B=\left(3x-2\right)\left(2x+1\right)-\left(6x-1\right)\left(x+2\right)\)
\(B=6x^2+3x-4x-2-6x^2-12x+x+2\)
\(B=-12x\)
c) \(C=6x\left(2x+3\right)-\left(4x-1\right)\left(3x-2\right)\)
\(C=12x^2+18x-12x^2+8x+3x-2\)
\(C=29x-2\)
d) \(D=\left(2x+3\right)\left(5x-2\right)+\left(x+4\right)\left(2x-1\right)-6x\left(2x-3\right)\)
\(D=10x^2-4x+15x-6+2x^2-x+8x-4-12x^2+18x\)
\(D=36x-10\)
Bài 2:
a: Ta có: \(2x\left(3x-5\right)\left(x+11\right)-3x\left(2x+3\right)\left(x+7\right)\)
\(=2x\left(3x^2+33x-5x-55\right)-3x\left(2x^2+14x+3x+21\right)\)
\(=6x^3+56x^2-110x-6x^2-51x^2-63x\)
\(=-117x\)
b: Ta có: \(\left(x^2+5x-6\right)\left(x-1\right)-\left(x+2\right)\left(x^2-x+1\right)-x\left(3x-10\right)\)
\(=x^3+4x^2-11x+6-\left(x^3-x^2+x+2x^2-2x+2\right)-3x^2+10x\)
\(=x^3+x^2-x+6-x^3-x^2+x-2\)
=4
c: Ta có: \(\left(x^2+x+1\right)\left(x-1\right)-x^2\left(x+1\right)+x^2-5\)
\(=x^3-1-x^3-x^2+x^2-5\)
=-6
Bài I. Rút gọn các biểu thức sau:
a) 3x(2x+1)+ (2x - 3)(x+1),
b) x(3x - 2)2 + 3(x-2)(x+2)
c) (2x+1)(4x² - 2x+1)-2x(2x+3)(2x - 3)-(x-3)²
a: Ta có: \(3x\left(2x+1\right)+\left(2x-3\right)\left(x+1\right)\)
\(=6x^2+3x+2x^2+2x-3x-3\)
\(=8x^2+2x-3\)
Rút gọn các biểu thức sau:
a. (x+5)2-4x(2x+3)2-(2x-1)(x+3)(x-3)
b. -2x(3x+2)(3x-2)+5(x+2)2-(x-1)(2x-1)(2x+1)
a: Ta có: \(\left(x+5\right)^2-4x\left(2x+3\right)^2-\left(2x-1\right)\left(x+3\right)\left(x-3\right)\)
\(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)
\(=x^2+10x+25-16x^3-48x^2-36x-2x^3+18x+x^2-9\)
\(=-18x^3-46x^2-8x+16\)
Bài 1:Rút gọn biểu thức
a.(x-2)(2x-1)-(2x-3)(x-1)-2
b. x(x+3y+1) -2y (x-1) - (y+x+1)x
Bài 2: Tìm x
a. (14x^3 + 12x^2 -14x) :2x = (x+2) (3x-4)
b. (4x - 5) (6x+1) - (8x+3) (3x-4) =15
Bài 1.
a)
\((x-2)(2x-1)-(2x-3)(x-1)-2\\=2x^2-x-4x+2-(2x^2-2x-3x+3)-2\\=2x^2-5x+2-(2x^2-5x+3)-2\\=2x^2-5x+2-2x^2+5x-3-2\\=(2x^2-2x^2)+(-5x+5x)+(2-3-2)\\=-3\)
b)
\(x(x+3y+1)-2y(x-1)-(y+x+1)x\\=x^2+3xy+x-2xy+2y-xy-x^2-x\\=(x^2-x^2)+(3xy-2xy-xy)+(x-x)+2y\\=2y\)
Bài 2.
a)
\((14x^3+12x^2-14x):2x=(x+2)(3x-4)\\\Leftrightarrow 14x^3:2x+12x^2:2x-14x:2x=3x^2-4x+6x-8\\ \Leftrightarrow 7x^2+6x-7=3x^2+2x-8\\\Leftrightarrow (7x^2-3x^2)+(6x-2x)+(-7+8)=0\\\Leftrightarrow 4x^2+4x+1=0\\\Leftrightarrow (2x)^2+2\cdot 2x\cdot 1+1^2=0\\\Leftrightarrow (2x+1)^2=0\\\Leftrightarrow 2x+1=0\\\Leftrightarrow 2x=-1\\\Leftrightarrow x=\frac{-1}2\)
b)
\((4x-5)(6x+1)-(8x+3)(3x-4)=15\\\Leftrightarrow 24x^2+4x-30x-5-(24x^2-32x+9x-12)=15\\\Leftrightarrow 24x^2-26x-5-(24x^2-23x-12)=15\\\Leftrightarrow 24x^2-26x-5-24x^2+23x+12=15\\\Leftrightarrow -3x+7=15\\\Leftrightarrow -3x=8\\\Leftrightarrow x=\frac{-8}3\\Toru\)
bài 1 rút gọn biểu thức
a) (2x-5)^2-4x(x+3)
b) (x-2)^3 -6(x+4)(x-4)-(x-2)(x^2+2x+4)
c)(x-1)^2-2(x-1)(x+2)+(x+2)^2+5(2x-3)
bài 2 rút gọn biểu thức
a)(2-3x)^2-5x(x-4)+4(x-1)
b)(3-x)(x^2+3x+9)+(x-3)^3
c)(x-4)^2(x+4)-(x-4)(x+4)^2+3(x^2-16)
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
Rút gọn biểu thức:
a. (2x-1)×(x^2+3x-2)-(2x^2-x-3)×(x-1)
b. 4×(x-1)×(x+1)-5x ×(x-2)+x^2
c. (3-2x)×(x-2)+4×(x-1)×(x-3)-2×(x-2)×(x+2)
b/ \(4\left(x-1\right)\left(x+1\right)-5x\left(x-2\right)+x^2\)
= \(4\left(x^2-1\right)-5x^2+10x+x^2\)
= \(4x^2-4-5x^2+10x+x^2\)
= \(10x-4\)
= \(2\left(5x-2\right)\)
c/ \(\left(3-2x\right)\left(x-2\right)+4\left(x-1\right)\left(x-3\right)-2\left(x-2\right)\left(x+2\right)\)
= \(3x-6-2x^2+4x+4\left(x^2-4x-4\right)-2\left(x^2-4\right)\)
= \(3x-6-2x^2+4x+4x^2-16x-16-8x^2-18\)
= \(-9x-12\)
= \(-3\left(3x+4\right)\)