tìm x biết :
4/3.7+4/7.11+4/11.15+...+4/(3x-1).(3x+3)=3/10
Tìm x biết :
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{3\left(x-1\right)\left(3x+3\right)}=\frac{3}{10}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{3\left(x-1\right)\left(3x+3\right)}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{4}{\left(3x-1\right)\left(3x+3\right)}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{3x-1}-\frac{1}{3x+3}=\frac{3}{10}\)(Vì 3x + 3 lớn hơn 3x - 1 là 4 đơn vị)
\(\Rightarrow\frac{1}{3}-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{x+1-1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{x}{3x+3}=\frac{3}{10}\)
\(\Rightarrow10x=3.\left(3x+3\right)\)
\(\Rightarrow10x=9x+9\)
\(\Rightarrow x=9\)
Vậy...
tìm x biết\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}......\frac{4}{\left(3x-1\right)\left(3x+3\right)}=\frac{3}{10}\)
cho mình công thức luôn nha
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-....-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3x+3}=\frac{1}{3}-\frac{3}{10}=\frac{1}{30}\)
Nên 3x + 3 = 30
3x = 30 - 3 = 27
x = 27 : 3 = 9
4( 1/3.7 + 1/7.11 +...+1/(3x-1)(3x+3) = 3/10
4( 1/3 - 1/7 + 1/7 - 1/11 +...+ 1/(3x-1) - 1/(3x+3) =3/10
4(1 - 1/(3x+3))= 3/10
phần còn lại tự giải nghe x=-71/111
Tìm x biết :
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{\left(3x-1\right).\left(3x+3\right)}=\frac{3}{10}\)
Cần cách làm vì mk bt kết quả rồi !
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{\left(3x-1\right)\left(3x+3\right)}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{3x-1}-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3x+3}=\frac{1}{3}-\frac{3}{10}=\frac{10}{30}-\frac{9}{30}=\frac{1}{30}\)
\(\Rightarrow\left(3x+3\right).1=1.30\Rightarrow3x+3=30\Rightarrow3x=27\Rightarrow x=9\)
\(\frac{1}{3}-\frac{1}{3x+3}=\frac{3x+3}{9x+9}-\frac{3}{9x+9}=\frac{3x}{9x+9}=\frac{3}{10}\)
\(\frac{x}{3x+3}=\frac{3}{10}\)
\(10x=9x+9\)
\(x=9\)
Tìm x, biết: \(\dfrac{4}{3.7}\)+\(\dfrac{4}{7.11}\)+\(\dfrac{4}{11.15}\)+...+\(\dfrac{4}{\left(3x-1\right)\left(3x+3\right)}\)=\(\dfrac{3}{10}\)
\(\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{\left(3x-1\right)\left(3x+3\right)}=\dfrac{3}{10}\) \(\Rightarrow\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{15}+...+\dfrac{1}{\left(3x-1\right)}-\dfrac{1}{\left(3x+3\right)}=\dfrac{3}{10}\)\(\Rightarrow\dfrac{1}{3}-0-0-...-0-\dfrac{1}{\left(3x+3\right)}=\dfrac{3}{10}\)(cộng số đối)
\(\Rightarrow\dfrac{1}{3}-\dfrac{1}{\left(3x+3\right)}=\dfrac{3}{10}\)
\(\Rightarrow\dfrac{1}{\left(3x+3\right)}=\dfrac{1}{3}-\dfrac{3}{10}\)
\(\Rightarrow\dfrac{1}{\left(3x+3\right)}=\dfrac{1}{30}\)
\(\Rightarrow3x+3=30\)
\(\Rightarrow x=\left(30-3\right)+3=9\)
Vậy x=9
Tìm x biết \(\frac{4}{3.7}+\frac{4}{7.11}+.....+\frac{4}{\left(3x-1\right).\left(3x+3\right)}=\frac{3}{10}\)
Tính tổng A= 5/3.7 + 5/7.11 + 5/11.15+...+5/2019.2023
Các bạn cho mình hỏi mình viết thành 5/4 x (4/3.7 + 4/7.11 + 4/11.15+...+ 4/2019.2023 ) được ko ạ?
Viết vậy đúng đó em
A = 5/(3.7) + 5/(7.11) + 5/(11.15) + ... + 5/(2019.2023)
= 5/4 . [4/(3.7) + 4/(7.11) + 4/(11.15) + ... + 4/(2019.2023)]
= 5/4 . (1/3 - 1/7 + 1/7 - 1/11 + 1/11 - 1/15 + ... + 1/2019 - 1/2023)
= 5/4 . (1/3 - 1/2023)
= 5/4 . 2020/6069
= 2525/6069
1) Tìm số tự nhiên x nhỏ nhất đê \(3^{2014}+3^x\)chia het cho 10
2) tìm \(\frac{x}{y}biet\frac{4x}{6y}=\frac{2x+8}{3y+11}\)
3) tìm X biết\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+.........+\frac{4}{\left(3X-1\right)\left(3X+3\right)}=\frac{3}{10}\)
4) Tam giácABC có goca=90 độ BC=30cm AB :AC= 3 :4 tim AB= .......cm
5) Tam giác ABC góc a=90 đường caoAH ;BH=9 cm ;CH=16cm Tim AH
6) Tìm số tự nhiên x ;y biết \(2^{x+1}.3^y=36^x\)
Tính nhanh:A= 4/3.7+4/7.11+4/11.15+...+4/107.111
a=4/3.7 +4/7.11+4/11.15 +.....+4/107/111
=1/3-1/7+1/7-1/11+1/11-1/15+......+1/107-1/111
=1/3-1/111
=12/37
Tìm x, biết:
\(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{x\left(x+4\right)}=\frac{43}{552}\)
\(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{x\left(x+4\right)}=\frac{43}{552}\)
\(\Leftrightarrow\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{x}-\frac{1}{x+4}\right)=\frac{43}{552}\)
\(\Leftrightarrow\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{x+4}\right)=\frac{43}{552}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{x+4}=\frac{43}{552}\div\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{x+4}=\frac{43}{138}\Leftrightarrow\frac{1}{x+4}=\frac{1}{3}-\frac{43}{138}\)
\(\Leftrightarrow\frac{1}{x+4}=\frac{1}{46}\Leftrightarrow x+4=46\Rightarrow x=46-4=42\)
Vậy x = 42
\(s=\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{x\left(x+4\right)}=\)\(\frac{43}{552}\)
\(\Rightarrow S=\frac{4}{4}\left(\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{x\left(x+4\right)}\right)=\frac{43}{552}\)
\(\Rightarrow S=\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{x\left(x+4\right)}\right)=\frac{43}{552}\)
\(\Rightarrow S=\frac{1}{4}\left(\frac{4}{3}-\frac{4}{7}+\frac{4}{7}-\frac{4}{11}+...+\frac{4}{x}-\frac{4}{x+4}\right)=\frac{43}{552}\)
\(\Rightarrow S=\frac{1}{4}\left(\frac{4}{3}-\frac{4}{x+4}\right)=\frac{43}{552}\)
\(\Rightarrow\frac{4}{3}-\frac{4}{x+4}=\frac{43}{552}:\frac{1}{4}\)
\(\frac{\Rightarrow4}{3}-\frac{4}{x+4}=\frac{43}{138}\)
\(\frac{\Rightarrow4}{x+4}=\frac{4}{3}-\frac{43}{138}=\frac{47}{46}\)
\(\Rightarrow x+4=4:\frac{47}{46}=\frac{184}{47}\)
\(\Rightarrow x=\frac{184}{47}-4=\frac{-4}{47}\)
Đặt A=đã cho
=>\(4A=\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{x\cdot\left(x+4\right)}\)
=>\(4A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+4}=\frac{1}{3}-\frac{1}{n+4}\)
=>\(4\cdot\frac{43}{552}=\frac{1}{3}-\frac{1}{x+4}\)
=>\(\frac{43}{138}=\frac{46}{138}-\frac{1}{x+4}\left(1\right)\)
Từ đt (1),ta có thể suy ra 1/x+4=3/138
=>3*(x+4)=138
=>x+4=46
=>x=42
Vậy x=42