\(\sqrt{x^{ }2-x-30}-3\sqrt{x+5}-2\sqrt{X-6}=-6\)
Giair phương trình vô tỷ giúp mình vs nha
giải phương trình
\(\sqrt{3+x}+\sqrt{6-x}-\sqrt{\left(3+x\right)\left(6-x\right)}=3\)
giúp với nha, mình làm mà ko chắc lắm vì đg học phương trình vô tỉ, mn giúp nha
Đk: tự xác định
\(pt\Leftrightarrow\sqrt{x+3}-\left(\frac{1}{3}x+1\right)+\sqrt{6-x}-\left(-\frac{1}{3}x+2\right)-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)
\(\Leftrightarrow\frac{x+3-\left(\frac{1}{3}x+1\right)^2}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{6-x-\left(-\frac{1}{3}x+2\right)^2}{\sqrt{6-x}-\frac{1}{3}x+2}-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)
\(\Leftrightarrow\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{\left(x+3\right)\left(x-6\right)}{\sqrt{-\left(x+3\right)\left(x-6\right)}}=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-6\right)\left(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}\right)=0\)
Dễ thấy:\(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}< 0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-6=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-3\\x=6\end{cases}}\)
Giair phương trình
\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-1}+\sqrt{x^2+x-6}\)
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-1}+\sqrt{x+3}-\sqrt{\left(x-2\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}-1\right)-\sqrt{x+3}\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{x+3}\right)\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{x+3}\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
giải bất phương trình vô tỷ sau ( có cách nào hay hơn cách bình phương không ạ ? )
\(\sqrt{x+2}\) - \(\sqrt{3-x}\) > \(\sqrt{5-2x}\)
Giair phương trình:
\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
e mới lên lớp 9 thôi nên tin thì anh tin còn ko thì thôi nha
\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(\Leftrightarrow x+y+z+4-2\sqrt{x-2}-4\sqrt{y-3}-6\sqrt{z-5}=0\)\(\Leftrightarrow x-2-2.1.\sqrt{x-2}+1+5+y+z-4\sqrt{y-3}-6\sqrt{z-5}=0\)(-2+1+5 sẽ =4 nha làm vậy cho xuất hiện hằng đẳng thức (x+y)^2 nha anh)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+5+y+z-4\sqrt{y-3}-6\sqrt{z-5}=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+y-3-2.2\sqrt{y-3}+4+4+z-6\sqrt{z-5}=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+4+z-6\sqrt{z-5}=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+z-5-2.3\sqrt{z-5}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)\(\Rightarrow\hept{\begin{cases}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Rightarrow}\hept{\begin{cases}\left(\sqrt{x-2}\right)^2=1^2\\\left(\sqrt{y-3}\right)^2=2^2\\\left(\sqrt{z-5}\right)^2=3^2\end{cases}}}\Rightarrow\hept{\begin{cases}x-2=1\Rightarrow x=3\\y-3=4\Rightarrow x=7\\z-5=9\Rightarrow x=14\end{cases}}\)
Bài làm hơi dài do cái phần tách nó dài quá sợ ghi 1 dòng ko đù nên e tách thành 3 lần tách nên nó dài anh ghi vào vỡ có thể rút lại nha. Nếu thấy đúng . Nhớ Chọn Đúng nha anh cảm ơn
bạn chuyển hết sang 1 vế rồi tách bình phương ,,,nó ra A2+B2+C2=0
=> A=0,,B=0,,,C=0
GIẢI PHƯƠNG TRÌNH VÔ TỶ BẰNG PHƯƠNG PHÁP BẤT ĐẲNG THỨC
Giải phương trình
\(\sqrt{x^3+2x}+\sqrt{3x-1}=\sqrt{x^3+4x^2+4x+1}\)
Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ
Giair phương trình: \(\left(x+2\right)\sqrt{3x+6}-2\sqrt{x^2+x-1}+3x^2-10=0\)
Các bạn giải giúp mk bài này nha: giải các phương trình vô tỉ sau:
\(x,\sqrt{x^2-x-6}=\sqrt{x-3}\)
\(y,\sqrt{3x-3}=5\)
bình phương 2 vế lên là ra p :>
mn giúp mk nha :Giair phương trình :\(x^2-\sqrt{x-5}=5\)
Đặt \(\sqrt{x+5}=a\text{≥}0\)
Ta có hệ phương trình \(\hept{\begin{cases}x^2+a=5\\x+5=a^2\end{cases}}\)
\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\Leftrightarrow\left(x+\sqrt{x+5}\right)\left(x-\sqrt{x+5}+1\right)\)=0
Đưa về dạng phương trình bậc nhất có căn thức. Ta có dạng sau:
\(\left(x.x\right)-\sqrt{x-5}=5\)
Gọi \(\sqrt{x-5}\Leftrightarrow a^2\) (a bình phương)
\(\left(x.x\right)-a^2=5\Leftrightarrow x^2-a^2=5\)
Vì \(x^{2+2}=x^4\Rightarrow\) Phương trình vô nghiệm
Phương trình vô tỉ:
1Giải các phương trình vô tỉ:
a)\(\sqrt{x+8}-\sqrt{x+3}=\sqrt{3x-2}\)
b)\(\sqrt{X-1}-\sqrt{5X-1}=\sqrt{3X-2}\)
2.\(\sqrt{\left(X-1\right)X}+\sqrt{\left(X-2\right)X}=\sqrt{\left(X+3\right)X}\)
3.\(2\sqrt{2X-1}=X^2-2X\)
4a).\(\sqrt{X^2+X-12}=8-X\)
b)\(\sqrt{x^2-x-8}=\sqrt{4-2x}\)
5.\(\sqrt{x+1}+\sqrt{x}=\sqrt{x+2}\)
Mong mọi người giúp nha ♥♥♥ Toàn bộ 5 bài đều là giải phương trình vô tỉ ạ.