Những câu hỏi liên quan
DT
Xem chi tiết
NQ
27 tháng 2 2016 lúc 19:00

Vậy x(x + y + z) + y(x + y+ z) + z(x + y + z) = 2 + 25 - 2 = 25

(x + y + z)(x + y + z) = 25

(x + y  + z) = 52 = (-5) 2

Bạn tự liệt kê x;y;z ra nha!

Bình luận (0)
H24
27 tháng 2 2016 lúc 19:08

Ta có : x (x + y + z) = 2      (1)

             y (x + y + z) = 25    (2)

             z (x + y + z) = -2      (3)

=> x (x + y + z) + y (x + y + z) + z (x + y + z) = 2 + 25 + (-2)

=> (x + y + z) (x + y + z) = 25

=> (x + y + z)2 = 52  = (-5)2

* Nếu (x + y + z)2 = 52 => x + y + z = 5       (4)

Từ (1) và (4) => x . 5 = 2 => x = 2/5 (thỏa mãn x > 0)

Từ (2) và (4) => y . 5 = 25 => y = 5

Từ (30 và (4) => z . 5 = -2 => z = -2/5

* Nếu (x + y + z)2 = (-5)2 => x + y + z = -5     (5)

Từ (1) và (5) => x . (-5) = 2 => x = -2/5 (ko thỏa mãn x > 0)

Vậy x = 2/5 ; y = 5 ; z = -2/5 thì thỏa mãn đề bài

Bình luận (0)
DC
Xem chi tiết
LH
Xem chi tiết
H24
29 tháng 1 2020 lúc 14:45

Áp dụng BĐT Cauchy - Schwarz dạng phân thức, ta có :

\(P=\)\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{\left(x+y+z\right)^2}{2x+2y+2z}=\frac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=\frac{2^2}{2.2}=1\)

Dấu " = ' xảy ra \(\Leftrightarrow\)\(x=y=z\)

Vậy : \(MinP=1\)\(\Leftrightarrow x=y=z\)

Bình luận (0)
 Khách vãng lai đã xóa
TX
Xem chi tiết
NN
21 tháng 1 2016 lúc 15:54

x=2

y=-2

z=-2

Bình luận (0)
NC
Xem chi tiết
H24
16 tháng 10 2016 lúc 20:15

a. vô nghiệm  vì tổng hai số dương chỉ bằng ko khi chúng đồng thời bằng 0

b. tổng 3 số dưng =0 khi dồng thời cả 3 bằng 0

vậy x=1; y=-1; z=1

c.tổng 3 số dưng luông  lớn hơn bằng ko

vậy x=1/3; y=2; z=1

d tương tự 

x-z=0

x+y=0

z+1/4=0

.............

z=-1/4

x=-1/4

y=1/4

Bình luận (0)
NC
16 tháng 10 2016 lúc 20:17

Cac ban lam chi tiet giup minh voi 

Bình luận (0)
PT
Xem chi tiết
NS
13 tháng 6 2018 lúc 17:54

z ở đâu hả bạn ?

Bình luận (0)
MA
Xem chi tiết
H24
22 tháng 9 2023 lúc 20:33

điểm rơi xấu quá: x=\(\dfrac{\sqrt[3]{9}}{2}\); y=\(\sqrt[3]{9}\), z =\(2\sqrt[3]{9}\) (4x=2y=z)

Bình luận (0)
TH
Xem chi tiết
TN
8 tháng 9 2017 lúc 22:12

Đặt \(\hept{\begin{cases}a=x-1\\b=y-1\\c=z-1\end{cases}}\)\(-1\le a,b,c\le1\) và \(a+b+c=0\)

\(T=(a+1)^4+(b+1)^4+(c+1)^4-12abc\)

\(=a^4+b^4+c^4+4(a^3+b^3+c^3)+6(a^2+b^2+c^2)+4(a+b+c)+3-12abc\)

Từ \(a+b+c=0\Rightarrow a^3+b^3+c^3=0\). Do đó:

\(T=a^4+b^4+c^4+6(a^2+b^2+c^2)+3\ge3\)

Xảy ra khi \(a=1;b=-1;c=0\)

Bình luận (0)
TN
8 tháng 9 2017 lúc 22:39

và các hoán vị nhé dấu = ấy

Bình luận (0)
TT
Xem chi tiết
OO
5 tháng 1 2019 lúc 20:49

Có 2 Th  | x-2| , (x-y+1)^2 =0

| x-2| , (x-y+1)^2 là hai số đối ; lx-2/ nguyên dương => ( x - y + 1 )^2 là số nguyên âm 

TH1  | x-2| , (x-y+1)^2 =0

=> x = 2 để /x-2/ = 0 

thay vào bên kia ta có : ( 2  - y + 1 ) ^2 = 0 => 2 - y + 1 = 0 => 3 - y = 0 => y = 3 

TH2 : Tự xét nha bn 

Bình luận (0)