Cho \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{a+b}\). Tính \(\dfrac{b}{a}+\dfrac{a}{b}\)
Cho a+b+c+d=2000 và \(\dfrac{1}{a+b+c}+\dfrac{1}{b+c+d}+\dfrac{1}{c+d+a}+\dfrac{1}{d+a+b}=\dfrac{1}{40}\)
Tính S=\(\dfrac{a}{b+c+d}+\dfrac{b}{c+d+a}+\dfrac{c}{d+a+b}+\dfrac{d}{a+b+c}\)
Cho a,b,c thỏa mãn a+b+c = 2021 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{2021}\)
Tính Q = \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
a) Cho các số a, b, c thỏa mãn abc\(\ne\) 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) =\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}\)=\(\dfrac{1}{3}\). Tính S= a + b + c + 2021.
Cho \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\).Tính P =\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
Cho a,b,c thỏa mãn \(\dfrac{a b-c}{c}=\dfrac{b c-a}{a}=\dfrac{c a-b}{b}\) Tính giá trị M = \(\left(1 \dfrac{b}{a}\right... - Hoc24
click vô link để tham khảo nha
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
Tính A=(a+b)(b+c)(c+a) + 9
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)=>\(\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)
=>abc=(bc+ac+ab)(a+b+c)=ab2+a2b+ac2+a2c+bc2+bc2+3abc
=ab(a+b)+ac(a+c)+bc(b+c)+3abc
=>ab(a+b)+ac(a+c)+bc(b+c)+2abc=0
=>ab(a+b+c-c)+ac(a+c+c-c)+bc(b+c)+2abc=0
=>(a-c)[ac+ab)]+(b+c)(ab+bc)+2ac2+2abc=0
=>(a-c)a(c+b)+(b+c)b(a+c)+2ac(b+c)=0
=>(b+c)[(a-c)a+b(a+c)+2ac]=0
=>(b+c)(a2-ac+ab+bc+2ac)=0
=>(b+c)(a2+ab+bc+ac)=0
=>(b+c)[a(a+b)+c(a+b)]=0
=>(b+c)(a+c)(a+b)=0
*A=(b+c)(a+c)(a+b)+9=0+9=9.
Ta có \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
⇔ \(\dfrac{ab+ac+bc}{abc}=\dfrac{1}{a+b+c}\)
⇔ ( ab + ac + bc )( a + b + c) = abc
⇔ a2b + ab2 + b2c + bc2 + a2c + ac2+ 3abc = abc
⇔ a2b + ab2 + b2c + bc2 + a2c + ac2+ 2abc = 0
⇔ (a+b)(b+c)(c+a) = 0
Vậy A = 0 + 9 = 9
Cho \(A=\dfrac{1}{1.21}+\dfrac{1}{2.22}+\dfrac{1}{3.23}+...+\dfrac{1}{80.100}\);
\(B=\dfrac{1}{1.81}+\dfrac{1}{2.82}+\dfrac{1}{3.83}+...+\dfrac{1}{20.100}\).
Tính \(\dfrac{A}{B}\).
A=20/1.21+20/2.22+...+20/80.100
=1-1/21+1/2-1/22+...+1/80-1/100
=(1+1/2+...+1/80)-(1/21+1/22+...+1/100)
80B=80/1.81+80/2.82+...+8/20.100
=1-1/81+1/2-1/82+...+1/20-1/100
=(1+1/2+...+1/20)-(1/81+1/82+...+1/100)
=(1+1/2+1/3+...+1/20+1/21+1/22+...+1/80)-(1/21+1/22+...1/80+1/81+1/82+...1/100)
=>20A=80B
=>A=4B
tớ cần hỏi bài tập toán như sau:
cho a+b+c = 2023 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=\dfrac{1}{2023}\)
tính giá trị biểu thức: Q = \(\dfrac{c}{a+b}+\dfrac{b}{a+c}+\dfrac{a}{b+c}\)
Cho \(abc\ne0\) và \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}.\) Tính \(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
Giúp ik
Lời giải:
Bạn tham khảo cách làm tương tự tại đây:
https://hoc24.vn/cau-hoi/cho-dfracab-2017ccdfracbc-2017aadfracca-2017bbvoi-a-b-c-ne0-tinhp-left1dfracabrightleft1dfracb.161494910584
Kết quả $P=8$ hoặc $P=-1$
a) Cho \(a+b+c+d=2000\) và \(\dfrac{1}{a+b+c}+\dfrac{1}{b+c+d}+\dfrac{1}{c+d+a}+\dfrac{1}{d+a+b}=\dfrac{1}{40}\)
Tính giá trị của: \(S=\dfrac{a}{b+c+d}+\dfrac{b}{c+d+a}+\dfrac{c}{d+a+b}+\dfrac{d}{a+b+c}\)
b) Xác định tổng các hệ số của đa thức \(f\left(x\right)=\left(5-6x+x^2\right)^{2016}\cdot\left(5-6x+x^2\right)^{2017}\)