Tìm GTLN
a; /125-x/+/x-65/
b; /x-5/-/x-7/
tìm GTNN hoặc GTLN
A=|2x+4,5|+|x-2,7|
giúp mình với
Tìm GTNN
A= 2a2+b2-2ab=10a+42
Tìm GTLN
A= -x2-y2+2x-6x+9
2) \(A=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\)
\(maxA=19\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Tìm GTLN
A=6x-x^2+3
B=2x-6y-x^2-y^2-2
Bài 3: Tìm GTLN
a, \(A=4-x^2+2x\)
b, \(B=4x-x^2\)
a)Ta có:
\(A=4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2x+1+3\right)\)
\(=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\forall x\)
Vậy MaxA=-3 khi x=1
b) Ta có: \(B=4x-x^2=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)=-\left(x-2\right)^2+4\le4\forall x\)Vậy MaxB=4 khi x=2
Bài 3: Tìm GTLN
a) Ta có: \(A=4-x^2+2x\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2+5\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x-1=0
hay x=1
Vậy: GTLN của biểu thức \(A=4-x^2+2x\) là 5 khi x=1
b) Ta có: \(B=4x-x^2\)
\(=-\left(x^2-4x\right)\)
\(=-\left(x^2-4x+4-4\right)\)
\(=-\left(x-2\right)^2+4\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2+4\le4\forall x\)
Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: GTLN của biểu thức \(B=4x-x^2\) là 4 khi x=2
Tìm gTLNA=\(-x^4+2x^2+4x+2002\)
tìm gtln
a) \(B=1-\sqrt{x^2-2x+2}\)
b) \(C=1+\sqrt{4x-x^2-2}\)
a: \(B=1-\sqrt{\left(x-1\right)^2+1}\)
(x-1)^2+1>=1
=>\(\sqrt{\left(x-1\right)^2+1}>=1\)
=>\(B< =0\)
Dấu = xảy ra khi x=1
b:
ĐKXĐ: -(x+2)^2+2>=0
=>-(x+2)^2>=2
=>(x+2)^2<=2
=>\(-\sqrt{2}-2< =x< =\sqrt{2}-2\)
\(-x^2+4x-2=-\left(x^2-4x+2\right)\)
\(=-\left(x^2-4x+4-2\right)=-\left(x-2\right)^2+2< =2\)
=>\(0< =\sqrt{4x-x^2-2}< =\sqrt{2}\)
=>1<=C<=căn 2+1
\(C_{max}=\sqrt{2}+1\Leftrightarrow x=2\)
5. Tìm GTLN
a) M= 7-4|x+3|
b) N= \(\dfrac{18}{\left|x-2\right|+9}\)+5
a, Ta có :
\(M=4\left|x+3\right|\ge0\) với \(\forall x\)
\(\Rightarrow7-4\left|x+3\right|\le7 với \forall x\)
Dấu '' = '' xảy ra khi:
\(\left|x+3\right|=0\\ \Rightarrow x+3=0\\ \Rightarrow x=-3\)
Vậy GTLN của \(M=7-4\left|x+3\right|\) là khi \(x=-3\)
b,
Để \(N=\dfrac{18}{\left|x-2\right|+9}+5\) có giá trị lớn nhất thì \(\dfrac{18}{\left|x-2\right|+9}\) phải lớn nhất
\(\Rightarrow\left|x-2\right|+9\) Phải nhỏ nhất và lớn hơn 0
Ta có:
\(\left|x-2\right|\ge0 với \forall x\)
\(\Rightarrow\left|x-2\right|+9\ge0 với \forall x\)
Dấu '' = '' xảy ra khi:
\(\left|x-2\right|=0\\ \Rightarrow x-2=0\\ \Rightarrow x=2\)
\(\Rightarrow\dfrac{18}{\left|x-2\right|+9}+5=2+5=7\)
Vậy GTLN của \(N=\dfrac{18}{\left|x-2\right|+9}+5\) là 7 khi \(x=2\)
Tìm GTNN
a) A=9x^2+5y^2-5x+3y
Tìm GTLN
a) A= -4x^2-5y^2+8xy+10y+12
b) B= -3x^2-16y^2-8xy-5x+2
Bài 1:
$A=(9x^2-5x)+(5y^2+3y)$
$=[(3x)^2-2.3x.\frac{5}{6}+(\frac{5}{6})^2]+5(y^2+\frac{3}{5}y+\frac{3^2}{10^2})-\frac{103}{90}$
$=(3x-\frac{5}{6})^2+5(y+\frac{3}{10})^2-\frac{103}{90}$
$\geq \frac{-103}{90}$
Vậy $A_{\min}=\frac{-103}{90}$. Giá trị này đạt tại $3x-\frac{5}{6}=y+\frac{3}{10}=0$
$\Leftrightarrow (x,y)=(\frac{5}{18}, \frac{-3}{10})$
Bài 2:
a.
$-A=4x^2+5y^2-8xy-10y-12$
$=(4x^2-8xy+4y^2)+(y^2-10y+25)-37$
$=(2x-2y)^2+(y-5)^2-37\geq -37$
$\Rightarrow A\leq 37$
Vậy $A_{\max}=37$. Giá trị này đạt tại $2x-2y=y-5=0$
$\Leftrightarrow x=y=5$
b.
$-B=3x^2+16y^2+8xy+5x-2$
$=(x^2+16y^2+8xy)+2(x^2+\frac{5}{2}x+\frac{5^2}{4^2})-\frac{41}{8}$
$=(x+4y)^2+2(x+\frac{5}{4})^2-\frac{41}{8}$
$\geq \frac{-41}{8}$
$\Rightarrow B\leq \frac{41}{8}$
Vậy $B_{\max}=\frac{41}{8}$. Giá trị này đạt tại $x+4y=x+\frac{5}{4}=0$
$\Leftrightarrow x=\frac{-5}{4}; y=\frac{5}{16}$
gtnn,gtlnA=4-6x-x^2
B=3x^2-6x+1
C=5x^2-2x-3
\(A=4-6x-x^2=-\left(x^2+6x-4\right)=-\left(x^2+6x+9-13\right)\)
\(=-\left[\left(x+3\right)^2-13\right]=-\left(x+3\right)^2+13\le13\)
Vậy \(A_{max}=13\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(B=3x^2-6x+1=\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+3-2\)
\(=\left(\sqrt{3}x-\sqrt{3}\right)^2-2\ge-2\)
Vậy \(B_{min}=-2\Leftrightarrow\sqrt{3}x-\sqrt{3}=0\Leftrightarrow x=1\)
\(C=5x^2-2x-3=\left(\sqrt{5}x\right)^2-2.\sqrt{5}x.\frac{1}{\sqrt{5}}+\frac{1}{5}-\frac{16}{5}\)
\(=\left(\sqrt{5}x-\frac{1}{\sqrt{5}}\right)^2-\frac{16}{5}\ge-\frac{16}{5}\)
Vậy \(C_{min}=-\frac{16}{5}\Leftrightarrow\sqrt{5}x-\frac{1}{\sqrt{5}}=0\Leftrightarrow\sqrt{5}x=\frac{1}{\sqrt{5}}\Leftrightarrow x=\frac{1}{5}\)
tìm GTLN
a)\(A=x^2+5y^2+2xy-4x-8y+2015\)
b)\(B=\left(x-2012\right)^2+\left(x+2013\right)^2\)
c)\(C=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
d)\(D=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)
Bạn xem lại đề nhé.
a) \(A=x^2+5y^2+2xy-4x-8y+2015\)
\(A=x^2-4x+4-2y\left(x-2\right)+y^2+2011+4y^2\)
\(A=\left(x-2\right)^2-2y\left(x-2\right)+y^2+2011+4y^2\)
\(A=\left(x-2-y\right)^2+4y^2+2011\)
Vì \(\left(x-y-2\right)^2\ge0;4y^2\ge0\)
\(\Rightarrow A_{min}=2011\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}x-y-2=0\\4y^2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
b) \(B=\left(x-2012\right)^2+\left(x+2013\right)^2\)
\(B=x^2-4024x+2012^2+x^2+4026x+2013^2\)
\(B=2x^2+2x+2012^2+2013^2\)
\(B=2\left(x^2+x+\dfrac{1}{4}\right)+2012^2+2013^2-\dfrac{1}{2}\)
\(B=2\left(x+\dfrac{1}{2}\right)^2+2012^2+2013^2-\dfrac{1}{2}\)
\(\Rightarrow B_{min}=2012^2+2013^2-\dfrac{1}{2}\)
Dấu bằng xảy ra : \(\Leftrightarrow x=-\dfrac{1}{2}\)