Những câu hỏi liên quan
NT
Xem chi tiết
H24
18 tháng 1 2022 lúc 22:07

Vì x và y nguyên không âm nên x ≥ 9

+) Với x = 9 thì ta tìm được y = 0

+) Xét x > 9. Khi đó x chia cho 5 có 5 loại số dư là 0, 1, 2, 3, 4

TH1: x chia hết cho 5 hay x có dạng 5k với k là số tự nhiên.

Ta có x2 + x - 89 = 25k2 + 5k - 89

Dễ thấy 25k2 + 5k chia hết cho 5 còn 89 không chia hết cho 5 nên vế trái không chia hết cho 5 => ko có cặp (x, y) thỏa mãn

Các TH sau em làm tương tự.

Những bài dạng này thường có cách làm chung là thử những trường hợp đầu tiên đúng, sau đó xét số trường hợp còn lại và nó sai sạch bằng 1 tính chất nào đấy, cụ thể trong bài này là tính chia hết cho 5

Bình luận (0)
NA
Xem chi tiết
BB
26 tháng 2 2022 lúc 20:02


(x2y+4xy+4y)-(x+2)=-1
y(x+2)2-(x+2)=-1
(x+2)[y(x+2)-1]=-1
+)TH1: x+2=1, [y(x+2)-1]=-1
->x=-1, y-1=-1, y=0
+)TH2: x+2=-1. [y(x+2)-1]=1
->x=-3, y=-2
Vậy x=-1,y=0 hay x=-3, y=-2

Bình luận (0)
 Khách vãng lai đã xóa
VD
Xem chi tiết
BH
12 tháng 2 2022 lúc 16:06

mình sửa ở dòng 4 là (n\(\in N\))(k\(\in Z\))

Bình luận (0)
BH
14 tháng 2 2022 lúc 16:04

t thấy x=2 và y=7 thỏa pt trên

cần chứng minh các số nguyên tố khác 2 và 7 ko thỏa đk ta có các số nguyên tố phần lớn là số lẻ (trừ số 2) nên khi ta bình phương  hoặc lập phương nó lên, nó là tích hai hoặc ba số lẻ có kết quả là các số lẻ và đều có dạng x=2n+1, y=2k+1(nN)(k Z) khi đó vế trái sẽ là 2n+1+49=2k+1

<=>2n+50=2k+1

mà vế trái chia hết cho 2 còn vế phải thì ko

vậy ngoài số 2 và 7 ra thì ko có số ngto nào thỏa điều kiện

vậy x=2 và y=7

Bình luận (0)
BL
Xem chi tiết
LD
15 tháng 8 2018 lúc 12:34

jupo voi

Bình luận (0)
NH
Xem chi tiết
TT
Xem chi tiết
DT
5 tháng 7 2016 lúc 15:40

do x+y+z=1 nên 1/x+1/y+1/z sẽ bằng \(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}=1+\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}+1\)

\(=3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)

Ta có

 \(\frac{x}{y}+\frac{y}{z}\ge2\)

\(\frac{y}{z}+\frac{z}{y}\ge2\)

\(\frac{x}{z}+\frac{z}{x}\ge2\)

Cộng vế theo vế của 3 bất đẳng thức trên ta được

\(\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\ge6\)

Cộng 3 vào 2 vế bất đẳng thức 

\(\Rightarrow3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\ge9\)

Mà \(3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge9\)

Xong !!!!

T I C K nha cảm ơn nhìu

CHÚC BẠN HỌC TỐT

Bình luận (0)
LD
22 tháng 4 2021 lúc 19:34

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}=9\left(đpcm\right)\)

Dấu "=" xảy ra <=> x=y=z=1/3

Bình luận (0)
 Khách vãng lai đã xóa
AN
Xem chi tiết
LH
Xem chi tiết
TA
Xem chi tiết
LL
14 tháng 10 2016 lúc 22:14

xem như pt bậc 2 ẩn x 
x^2 + y^2 + 5(xy)^2 + 60 =37xy 
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0 
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2) 
= -20y^4+165y^2- 240 >=0 
=> 1 < y^2 <7 => y= +-2 
với y= 2 => x = 2 thỏa mãn 
với y =-2 => x =- 2 thỏa mãn

Bình luận (0)
TA
15 tháng 10 2016 lúc 5:40

ban oi minh chua hoc denta

Bình luận (0)