Cho M=1/2. 3/4 .5/6 . ..........99/100; N=2/3 . 4/5 . 6.7. .......100/101
a)chứng minh M<N
b)tìm tích M.N
c)chứng minh M<1/10
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
M=1÷2×3÷4×5÷6×...×99÷100 & N=2÷3×4÷5×6÷7×...×100÷101
M*N=1/2*3/4*5/6*..*99/100*2/3*4/5*6/7*..... = 1/101 (1)
Mặt khác :
1/2 <2/3
3/4<4/5
........
99/100 < 100/101
=>1/2*3/4*5/6*....*99/100 < 2/3*4/5*6/7*....*100/101
hay M< N =>M*M<M*N hay M^2 < 1/101 <1/100
=>M^2 < 1/100 hay M^2 < (1/10)^2 =>M<1/10 (vì M>0 ) (đpcm)
yêu cầu là j?k có yêu cầu sao mà giải dc hả bạn??
S=1×2+2×3+3×4+4×5+...........+99×100
3S=1×2×3+2×3×(4-1)+3×4×(5-2)+4×5×(6-3)+............+99×100×(101-98)
3S=1×2×3+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+.............+99×100×101-98×99×100
3S=99×100×101
Tại sao 3S=99×100×101
Các bạn giải thích hộ mình với!
MÌNH CẢM ƠN MỌI NGƯỜI!
Cho M= 1/2. 34/. 5/6 .... 99/100 ; N = 2/3. 4/5. 6/7......100/101
Tìm tích M.N
Cho M = 1+99+992+993+994+995+996+997.Chứng minh M chia hết cho 100
S=1×2+2×3+3×4+4×5+...........+99×100
3S=1×2×3+2×3×(4-1)+3×4×(5-2)+4×5×(6-3)+............+99×100×(101-98)
3S=1×2×3+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+.............+99×100×101-98×99×100
3S=99×100×101
Tại sao 3S=99×100×101
Các bạn giải thích hộ mình với!
MÌNH CẢM ƠN MỌI NGƯỜI!
Cho M= 1/2*3/4*5/6 * ... * 99/100
Chứng minh M< 1/10
Đặt \(N=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
ta có: \(M.N=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}=\frac{1}{101}\)
ta có: \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< N=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(\Rightarrow M.M< M.N\)
\(\Rightarrow M^2< \frac{1}{101}< \frac{1}{100}=\left(\frac{1}{10}\right)^2\)
\(\Leftrightarrow M^2< \left(\frac{1}{10}\right)^2\)
\(\Rightarrow M< \frac{1}{10}\left(đpcm\right)\)
-1-2-3-4-5-.......-100
-2-4-6-8-....-100
-6-9-12-15-......-99
-1+2-3+4-5+6-......-99+100
4-8+12-16+...........+196-200
A = -1 - 2 - 3 - ... - 100
= -(1 + 2 + 3 + ... + 100)
= -100.101 : 2
= -5050
--------
B = -2 - 4 - 6 - ... - 100
= -(2 + 4 + 6 + ... + 100)
Số số hạng của B:
(100 - 2) : 2 + 1 = 50 (số)
B = -(100 + 2) . 50 : 2 = -2550
--------
C = -6 - 9 - 12 - ... - 99
= -(6 + 9 + 12 + ... + 99)
Số số hạng của C:
(99 - 6) : 3 + 1 = 32 (số)
C = -(99 + 6) . 32 : 2 = -1680
--------
D = 4 - 8 + 12 - 16 + ... + 196 - 200
Số số hạng của D:
(200 - 4) : 4 + 1 = 50 (số)
D = (4 - 8) + (12 - 16) + ... + (196 - 200)
= -4 + (-4) + ... + (-4) (25 số -4)
= -4.25
= -100
cho:
m = 1/2*3/4*5/6*....*99/100
n = 2/3*4/5*6/7*...*100/101
a, Chứng tỏ m<n
b,Tìm m*n
c, chứng tỏ m<1/10
Cho M= 1/2 . 3/4. 5/6.....99/100 & N= 2/3. 4/5. 6/7....100/101
a. Chứng minh M < N
b. Tìm tích M . N
c.Chứng minh M < 1/ 10
a, Xét 1/2 < 2/3 ; 3/4<4/5 ; ............ ; 99/100<100/101
=> 1/2.3/4.......99/100 < 2/3.4/5.........100/101
=> M<N
b, M.N = 1/2.3/4.4/5......99/100.2/3.4/5.5/6......100/101
M.N = 1/2.2/3.3/4.4/5.............99/100.100/101
M.N = 1/101
c, Vì M<N nên M.M < M.N Hay M.M < 1/101 < 1/100
hay M.M < 1/10 . 1/10
=> M < 1/10 (Đpcm)
a) Ta có M.N = 1/2.2/3.3/4.4/5....99/10.10/101 = 1/101
b) Xét M và N đều gồm 50 thừa số mà:
1/2 < 2/3
3/4 < 4/5
.............
99/100 < 100/101
=> M < N
c) Do M < N nên => M.M < M.N (Nhân 2 vế với M)
=> M.M < 1/101 (Vì M.N = 1/101 theo cma)
Mặt khác 1/101 < 1/100
=> M.M < 1/100 = 1/10.1/10
=> M < 1/10
a) Mỗi biểu thức M, N đều có 50 thừa số.
Dễ thấy \(\frac{1}{2}< \frac{2}{3}\);\(\frac{3}{4}< \frac{4}{5}\); ... \(\frac{99}{100}< \frac{100}{101}\)nên M < N
b) M.N = \(\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)=\(\frac{1}{101}\)
c) Vì M < N nên M.M < M.N hay M.M < \(\frac{1}{101}\)<\(\frac{1}{100}\)do đó M.M < \(\frac{1}{10}.\frac{1}{10}\)