Những câu hỏi liên quan
BB
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết
LL
30 tháng 9 2021 lúc 21:34

Em tham khảo:

cho 3 số x,y,z đôi một khác nhau và x+y+z=0 Tính\(P=\dfrac{2018\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2... - Hoc24

Bình luận (0)
H24
Xem chi tiết
NT
3 tháng 9 2023 lúc 16:01

(2x-y+7)^2022>=0 với mọi x,y

|x-3|^2023>=0 với mọi x,y

Do đó: (2x-y+7)^2022+|x-3|^2023>=0 với mọi x,y

mà \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}< =0\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}=0\)

=>2x-y+7=0 và x-3=0

=>x=3 và y=2x+7=2*3+7=13

Bình luận (0)
L7
Xem chi tiết
BH
4 tháng 4 2022 lúc 15:54

vì \(\left(4x^2-4x+1\right)^{2022}\ge0\left(\forall x\right)\),\(\left(y^2-\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}\ge0\left(\forall y\right)\),\(\left|x+y+z\right|\ge0\)

mà \(\left(4x^2-4x+1\right)^{2022}+\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}+\left|x+y-z\right|=0\)

=>\(\left\{{}\begin{matrix}4x^2-4x+1=0\\y^2+\dfrac{4}{5}y+\dfrac{4}{25}=0\\x+y-z=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-1=0\\y+\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\\dfrac{1}{2}-\dfrac{2}{5}-z=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)

KL: vậy \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)

Bình luận (0)
RN
Xem chi tiết
TN
22 tháng 10 2016 lúc 19:47

\(\left|x-1\right|+\left(y+2\right)^{2016}=0\)

Ta thấy: \(\hept{\begin{cases}\left|x-1\right|\ge0\\\left(y+2\right)^{2016}\ge0\end{cases}}\)

\(\Rightarrow\left|x-1\right|+\left(y+2\right)^{2016}\ge0\)

\(\Rightarrow\hept{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

\(\Rightarrow A=2x^5-5y^3+2017=2\cdot1^5-5\cdot\left(-2\right)^3+2017=2059\)

Bình luận (0)
TH
Xem chi tiết
ND
8 tháng 4 2021 lúc 22:05

Ta có: \(\hept{\begin{cases}\left(2021x-1\right)^{2020}\ge0\\\left(3y+4\right)^{2022}\ge0\end{cases}}\left(\forall x,y\right)\)

\(\Rightarrow\left(2021x-1\right)^{2020}+\left(3y+4\right)^{2022}\ge0\left(\forall x,y\right)\)

Mà theo đề bài ta có: \(\left(2021x-1\right)^{2020}+\left(3y+4\right)^{2022}\le0\)

Nên từ đó suy ra: \(\hept{\begin{cases}\left(2021x-1\right)^{2020}=0\\\left(3y+4\right)^{2022}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2021x-1=0\\3y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2021}\\y=-\frac{4}{3}\end{cases}}\)

Khi đó \(M=2021\cdot\frac{1}{2021}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)

\(=-\frac{4}{3}-\frac{16}{9}=-\frac{28}{9}\)

Bình luận (0)
 Khách vãng lai đã xóa
PO
Xem chi tiết
DN
Xem chi tiết
NT
6 tháng 2 2022 lúc 1:05

\(\left|x-1\right|+\left(y+2\right)^{2016}=0\)

=>x-1=0 và y+2=0

=>x=1 và y=-2

\(C=13\cdot1^5-3\cdot\left(-2\right)^3+2017=13+2017-3\cdot\left(-8\right)=2030+24=2054\)

Bình luận (0)