CẦN GẤP..GIÚP VỚI NHA..
Tìm giá trị của m để khoảng cách từ O đến (d : y=(m+3)x-2m-1) là lớn nhất
Cho đường thẳng (d) có phương trình: y=(2m-1)x +m +1. Tìm m để khoảng cách từ (O) đến đương thẳng (d) lớn nhất và giá trị đó bằng bao nhiêu ?
Trong mặt phẳng toạ độ cho đường thẳng (d): y= (m+2)x+2m+3 .
a. Tìm m để (d) đi qua điểm A(2,5) .
b. Chứng minh rằng với mọi giá trị của tham số m thì (d) luôn đi qua một điểm cố định.
c. Tìm m để khoảng cách từ gốc O đến đường thẳng (d) là lớn nhất.
Cho đường thẳng (d) có phương trình y=(2m-1)x + m+1 và đường thẳng _d') có phương trình \(y=x+3\)
a) Tìm giá trị của m để đường thẳng (d) cắt đường thẳng (d') tại 1 điểm trên trục tung
b) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) đạt giá trị lớn nhất và giá trị lớn nhất đó bằng bao nhiêu
Cho đường thẳng (d):y=mx-2m-1 (m là tham số,m khác 0)
Tìm m sao cho khoảng cách từ O đến (d) đạt giá trị:
1)Nhỏ nhất
2)Lớn nhất
Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d): y=(m+2)x+2m+3 là lớn nhất
cho đường thẳng y=(m-2) x+2 (d) a, CMR: đường thẳng (d) luôn đi qua 1 điểm cố định với mọi m b,tìm già trị của m để khoảng cách từ gốc tọa độ đến đương thẳng (d) =1 c, tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng m là lớn nhất
\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua
\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)
cho đường thẳng (d): y=m(2x-1)+3-2x
a) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) bằng 1.
a) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) đạt giá trị lớn nhất.
Cho đường thẳng: y=(m-2)x +2 (d) a, Chứng minh rằng đường thẳng d luôn đi qua một điểm cố định với mọi giá trị của m b, Tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng d bằng 1 c, Tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng d có giá trị lớn nhất
Cho đường thẳng y = (m - 2)x +2 (d)
a) Chứng minh rằng đường thẳng d luôn đi qua một điểm cố định với mọi giá trị của m
b) Tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng d bằng 1
c) Tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng d có giá trị lớn nhất