tìm các số nguyên x,y thỏa mãn 2x3 -2y3 +5xy+1=0
tìm các cặp số nguyên (x;y) thỏa mãn: \(x^2\)-5xy +6y^2+1=0
Tìm các số nguyên x, y thỏa mãn: x^2+5xy+6y^2+x+2y-2=0
(x2 + 4xy + 4y2) + xy + 2y2 + x + 2y = 2
(x + 2y)2 + (x + 2y)(y + 1) = 2
(x + 2y)(x + 3y + 1) = 2
TH1: \(\hept{\begin{cases}x+2y=1\\x+3y+1=2\end{cases}}\)<=>\(\hept{\begin{cases}x=1\\y=0\end{cases}}\)(thỏa mãn)
TH2: \(\hept{\begin{cases}x+2y=2\\x+3y+1=1\end{cases}}\)<=> \(\hept{\begin{cases}x=6\\y=-2\end{cases}}\)(thỏa mãn)
TH3: \(\hept{\begin{cases}x+2y=-1\\x+3y+1=-2\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)(thỏa mãn)
TH4: \(\hept{\begin{cases}x+2y=-2\\\text{x+3y+1=-1}\end{cases}}\)<=>\(\hept{\begin{cases}x=-2\\y=0\end{cases}}\)(thỏa mãn)
a)tìm các cặp số nguyên dương x,y thỏa mãn: 2x^2+3y^2-5xy-x+3y-4=0
b) các số x,y,z thỏa mãn điều kiện x^2+y^2+z^2=2014. tìm giá trị nhỏ nhất của M=2xy-yz-xz
tìm các số nguyên x,y thỏa mãn 5xy +x-10y=14
Bài 1. Tìm các số nguyên x, y thỏa mãn
2x-3y+5xy= 5
\(2x-3y+5xy=5\)
\(\Leftrightarrow x\left(2-5y\right)-\frac{3}{5}\left(2-5y\right)=\frac{19}{5}\)
\(\Leftrightarrow5x\left(2-5y\right)-3\left(2-5y\right)=19\)
\(\Leftrightarrow\left(2-5y\right)\left(5x-3\right)=19\) ( lập bảng )
Tìm các số tự nhiên (x,y) thỏa mãn
(x + y)2 + xy2 + 2y3 = 9y2 + 8x
\(\left(x+y\right)^2+xy^2+2y^3=9y^2+8x\)
\(\Leftrightarrow x^2+y^2+2xy+xy^2+2y^3=9y^2+8x\)
\(\Leftrightarrow xy^2+x^2-8y^2-8x+2xy+2y^3=0\)
\(\Leftrightarrow x\left(y^2+x\right)-8\left(y^2+x\right)+2y\left(y^2+x\right)=0\)
\(\Leftrightarrow\left(y^2+x\right)\left(x-8+2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y^2+x=0\\x+2y=8\end{matrix}\right.\)
TH1: \(y^2+x=0\Leftrightarrow x=y=0\), thỏa mãn.
TH2: \(x+2y=8\Rightarrow\left(x;y\right)\in\left\{\left(0;4\right);\left(2;3\right);\left(4;2\right);\left(6;1\right);\left(8;0\right)\right\}\)
Vậy pt đã cho có các cặp nghiệm tự nhiên (x; y) là:
\(\left(x;y\right)\in\left\{\left(0;0\right);\left(0;4\right);\left(2;3\right);\left(4;2\right);\left(6;1\right);\left(8;0\right)\right\}\)
tìm các số nguyên dương x,y thỏa mãn : \(6x^2+5xy-25y^2=221\)
tìm các cặp số nguyên (x;y) thỏa mãn : \(2x^2+2y^2+3x-6y=5xy-7\)
\(2x^2+2y^2+3x-6y=5xy-7\)
\(\Leftrightarrow2x^2+2y^2+3x-6y-5xy=-7\)
\(\Leftrightarrow2x^2-4xy+2y^2-xy+3x-6y=-7\)
\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)+3\left(x-2y\right)=-7\)
\(\Leftrightarrow\left(2x-y+3\right)\left(x-2y\right)=-7\)
vì x,y nguyên nên \(\hept{\begin{cases}2x-y+3\\x-2y\end{cases}\in Z}\)
Ta có : -7 = ( -7 ) . 1 = (-1 ) . 7
Tới đây bạn tự làm nhé
Tìm các số nguyên dương x y thỏa mãn x2 y2 (y -x)=5xy2 -27
okretouiutyrtsgvxbtmgrgvbzxgtgxvevgetvzge