Giải giúp tớ bài này với...
"Chứng tỏ\(\frac{15.n+1}{30.n+1}\)là phân số tối giản với mọi n Z
tìm n thuộc Z để P= \(\frac{-n+2}{n-1}\) là số nguyên tố
chứng tỏ rằng với mọi n thì \(\frac{7n+10}{5n+7}\) là phân số tối giản
giải giúp mk với
Chứng tỏ rằng với mọi số nguyên n, các phân số sau là phân số tối giản:
a,\(\frac{15.n+1}{30.n+1}\)
b,\(\frac{n^3+2n}{n^4+3.n^2+1}\)
bn viết linh tinh gì thế ronando
chứng tỏ rằng với mọi n thuộc Z thì phân số \(\frac{7n}{7n+1}\) luôn là phân số tối giản
Gọi d là ƯCLN của 7n và 7n + 1
=> 7n chia hết cho d và 7n + 1 chia hết cho d
=> (7n + 1) - 7n chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy phân số \(\frac{7n}{7n+1}\) tối giản với mọi n
Gọi ước chung lớn nhất cảu 7n và 7n+1 là d
Ta có: 7n chia hết cho d ; 7n+1 chia hết cho d
=> 7n+1 - 7n chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> uwocschung lớ nhất của 7 n và 7n+1 là 1
=> \(\frac{7n}{7n+1}\)tối giản
=> đpcm
Gọi d = ƯCLN ( 7n ; 7n + 1 )
Ta có :
7n \(⋮\)d ; 7n + 1 \(⋮\)d
=> ( 7n + 1 ) - 7n \(⋮\)d
=> 1 \(⋮\)d
Vậy .........
Bài 1: Chứng tỏ rằng phân số:
A=\(\frac{n+3}{2n+5}\)là phân số tối giản với mọi số tự nhiên n thuộc N
Gọi d là UCLN(n+3,2n+5)
=> n+3:d , 2n+5:d
=>2n+6:d , 2n+5:d
=>2n+6 - 2n+5 :d
=> 1: d
Vậy n+3/2n+5 là phan so toi gian
Minh nhanh nhat nen cho minh nhe
gọi \(\text{Ư}CLN_{\left(n+3;2n+5\right)}=d\)
\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)
\(\Rightarrow2n+6-\left(2n+5\right)⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
vậy phân số \(\frac{n+3}{2n+5}\) là phân số tối giản
Chứng tỏ phân số 2n+1/3n+2 là phân số tối giản với mọi n thuộc Z
Gọi d là ƯCLN của 2n + 1 và 3 n + 2
Ta có
2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)
3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )
Từ (1), (2)
=> 6n+4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN ( 2n + 1 : 3n + 2 ) = 1
=> Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z
Phương pháp chứng minh 1 p/s tối giản là :
Chứng minh ƯCLN của tử và mẫu = 1
Còn cách làm : Tự làm
Gọi d= ƯCLN (2n+1, 3n+2)(d thuộc N*)
\(\Rightarrow\)2n+1\(⋮\)d
3n+2\(⋮\)d
\(\Rightarrow\)(2n+1).3\(⋮\)d
(3n+2).2\(⋮\)d
\(\Rightarrow\)6n+3\(⋮\)d
6n+4\(⋮\)d
\(\Rightarrow\)(6n+4)-(6n+3)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
\(\Rightarrow\)2n+1/3n+2 là phân số tối giản.
\(\Rightarrow\)Đpcm.
Mọi người giúp e , e đg cần gấp ạ , e cảm ơn !Chứng tỏ rằng với n thuộc Z và n không bằng -2 thì n+1 phần n+2 là phân số tối giản
Giả sử `A=(n+1)/(n+2)` là số nguyên
`=>n+1 vdots n+2`
`=>n+2-1 vdots n+2`
`=>1 vdots n+2`
`=>n+2 in Ư(1)={1,-1}`
`=>n in {-1,-3}`
Mời bạn kiểm tra lại ạ phải thêm `n in N` hoặc `n ne {-1,-3}`
`=>` giả sử sai
`=>` A là phân số tối giản với `n in N`
mọi người giúp tui nhé!
chứng tỏ rằng 12n+1/30n+2 là phân số tối giản (với N thuộc Z)!
nhớ giúp nhé!
1. Chứng tỏ rằng phân số \(\frac{2n+5}{3n+7}\)là phân số tối giản với mọi n\(\in\)Z
Gọi d là (2n+5;3n+7)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
=> [6n+15 - ( 6n+14 )] \(⋮\) d
=> 1 \(⋮\)d
=> phân số trên tối giản
Bài 1: Cho phân số n - 1 / n - 2 ( n thuộc Z ; n khác 2 ). Tìm n để A là phân số tối giản
Bài 2: Với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản: A = 2n + 1 / 2n + 3
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.