Những câu hỏi liên quan
DT
Xem chi tiết
NL
Xem chi tiết
NK
15 tháng 1 2016 lúc 16:53

bn viết linh tinh gì thế ronando

Bình luận (0)
CN
15 tháng 1 2016 lúc 17:20

Khó quá  !

Bình luận (0)
DA
Xem chi tiết
LD
2 tháng 8 2017 lúc 19:25

Gọi d là ƯCLN của 7n và 7n + 1

=> 7n chia hết cho d và 7n + 1 chia hết cho d

=> (7n + 1) - 7n chia hết cho d

=> 1 chia hết cho d

=> d = 1 

Vậy phân số \(\frac{7n}{7n+1}\) tối giản với mọi n 

Bình luận (0)
TD
2 tháng 8 2017 lúc 19:26

Gọi ước chung lớn nhất cảu 7n và 7n+1 là d 

Ta có: 7n chia hết cho d ; 7n+1 chia hết cho d 

=> 7n+1 - 7n chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> uwocschung lớ nhất của 7 n và 7n+1 là 1

=> \(\frac{7n}{7n+1}\)tối giản

=> đpcm

Bình luận (0)
H24
10 tháng 2 2018 lúc 19:54

Gọi d = ƯCLN ( 7n ; 7n + 1 )

Ta có :

7n \(⋮\)d ; 7n + 1 \(⋮\)d

=> ( 7n + 1 ) - 7n \(⋮\)d

=> 1 \(⋮\)d

Vậy .........

Bình luận (0)
TH
Xem chi tiết
LN
19 tháng 6 2017 lúc 22:17

Gọi d là UCLN(n+3,2n+5)

=> n+3:d , 2n+5:d

=>2n+6:d , 2n+5:d

=>2n+6 - 2n+5 :d

=> 1: d

Vậy n+3/2n+5 là phan so toi gian

Minh nhanh nhat nen cho minh nhe

Bình luận (0)
TV
28 tháng 2 2018 lúc 21:38

gọi \(\text{Ư}CLN_{\left(n+3;2n+5\right)}=d\)

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)

\(\Rightarrow2n+6-\left(2n+5\right)⋮d\)

\(\Rightarrow2n+6-2n-5⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

vậy phân số \(\frac{n+3}{2n+5}\) là phân số tối giản

Bình luận (0)
H24
Xem chi tiết
SM
28 tháng 3 2018 lúc 10:03

Gọi d là ƯCLN của 2n + 1 và 3 n + 2

Ta có

2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)

3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )

Từ (1), (2)

=> 6n+4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=>  ƯCLN ( 2n + 1 : 3n + 2 ) = 1

=>  Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z 

Bình luận (0)
CG
28 tháng 3 2018 lúc 10:56

Phương pháp chứng minh 1 p/s tối giản là :

Chứng minh ƯCLN của tử và mẫu = 1

Còn cách làm : Tự làm

Bình luận (0)
NT
28 tháng 3 2018 lúc 11:20

Gọi d= ƯCLN (2n+1, 3n+2)(d thuộc N*)

\(\Rightarrow\)2n+1\(⋮\)d

        3n+2\(⋮\)d

\(\Rightarrow\)(2n+1).3\(⋮\)d

          (3n+2).2\(⋮\)d

\(\Rightarrow\)6n+3\(⋮\)d

         6n+4\(⋮\)d

\(\Rightarrow\)(6n+4)-(6n+3)\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)d=1

\(\Rightarrow\)2n+1/3n+2 là phân số tối giản.

\(\Rightarrow\)Đpcm.

Bình luận (0)
TQ
Xem chi tiết
H24
28 tháng 2 2021 lúc 21:26

Giả sử `A=(n+1)/(n+2)` là số nguyên

`=>n+1 vdots n+2`

`=>n+2-1 vdots n+2`

`=>1 vdots n+2`

`=>n+2 in Ư(1)={1,-1}`

`=>n in {-1,-3}`

Mời bạn kiểm tra lại ạ phải thêm `n in N` hoặc `n ne {-1,-3}`

`=>` giả sử sai

`=>` A là phân số tối giản với `n in N`

Bình luận (0)
TH
Xem chi tiết
TM
Xem chi tiết
HT
6 tháng 7 2021 lúc 19:55

Gọi d là (2n+5;3n+7)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

=> [6n+15 - ( 6n+14 )] \(⋮\) d 

=> 1 \(⋮\)d

=> phân số trên tối giản 

Bình luận (0)
 Khách vãng lai đã xóa
VM
Xem chi tiết
VL
12 tháng 5 2021 lúc 20:05

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

Bình luận (0)
 Khách vãng lai đã xóa