x/y=2/5và 0,2x+0,3y=3,8
Tìm x,y biết
x/y=2/5 và 0,2x+0,3y=3,8
x=2y/5 thay vào 0,2x+0,3y=3,8 ta tìm được y sau đó tìm x thôi
mình ko có time nên nói cách làm thôi
Chứng minh rằng hiệu hai đơn thức 0,7x^4+0,2x^2-5và -0,3x^4 + \(\frac{1}{5}\) x^2-8 luôn luôn dương với mọi giá trị thực của x
Ta có \(\left(0,7x^4+0,2x^2-5\right)-\left(-0,3x^4+\frac{1}{5}x^2-8\right)\)= \(0,7x^4+0,2x^2-5+0,3x^4-\frac{1}{5}x^2+8\)
= \(\left(0,7x^4+0,3x^4\right)+\left(0,2x^2-\frac{1}{5}x^2\right)+\left(8-5\right)\)= x4 + 3
Ta có x4 \(\ge\)0 với mọi gt của x => x4 + 3 > 0 với mọi gt của x (đpcm)
a)\(\hept{\begin{cases}2x+y=5\\x-y=1\end{cases}}\)b)\(\hept{\begin{cases}2x-3y=3\\2x+5y=5\end{cases}}\)c)\(\hept{\begin{cases}4x-5y=2\\2x-3y=0\end{cases}}\)d)\(\hept{\begin{cases}0,2x+0,3y=-0,2_{ }\\0,3x-0,2y=-0,3\end{cases}}\)e)\(\hept{\begin{cases}0,3x+0,5y=3\\1,5x-2y=1,5\end{cases}}\)GIÚP EM VỚI EM CẦN GẤP ĐÓ MN ƠI
anh làm mẫu 2 câu còn lại em tự làm cho quen nhé, mấy cái hpt như này thì em dùng phương pháp cộng đại số là tối ưu nhất
a, \(\hept{\begin{cases}2x+y=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=6\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
b, \(\hept{\begin{cases}2x-3y=3\\2x+5y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}8y=2\\x=\frac{3+3y}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=\frac{15}{8}\end{cases}}}\)
Tính tổng của hai đa thức a)M=x²y+0,5xy³-7,5x³y²+x³ và N=3xy³-x²y +5,5x³y² b)P=x⁵+xy+0,3y²-x²y²-2 và N=x²y²+5-y²
a: \(M=x^2y+\dfrac{1}{2}xy^3-\dfrac{15}{2}x^3y^2+x^3\)
\(N=3xy^3-x^2y+\dfrac{11}{2}x^3y^2\)
Do đó: \(M+N=\dfrac{7}{2}xy^3-2x^2y^2+x^3\)
b: \(P=x^3+xy^2+y^2-x^2y^2-2\)
\(N=x^2y^2+5-y^2\)
Do đó: \(P+N=x^3+xy^2+3\)
X/y=2/3;y/z=4/5và x^2 -y^2 = -320
Từ \(\frac{x}{y}=\frac{2}{3}\)\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{z}=\frac{4}{5}\)\(\Rightarrow\frac{y}{4}=\frac{z}{5}\)\(\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)(1) \(\Rightarrow\left(\frac{x}{8}\right)^2=\left(\frac{y}{12}\right)^2=\left(\frac{z}{15}\right)^2=\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)
\(=\frac{x^2-y^2}{64-144}=\frac{-320}{-80}=4\)
\(\Rightarrow x^2=4.64=256\)\(\Rightarrow x=\pm18\)
\(y=4.144=576\)\(\Rightarrow y=\pm24\)
\(z^2=4.225=900\)\(\Rightarrow z=\pm30\)
Từ (1) \(\Rightarrow\)x, y, z có cùng dấu
Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn đề bài là: \(\left(-18;-24;-30\right)\); \(\left(18;24;30\right)\)
\(\frac{x}{y}=\frac{2}{3};\frac{y}{z}=\frac{4}{5}\) và \(x^2-y^2=-320\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x^2}{8^2}=\frac{y^2}{12^2}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{x^2-y^2}{64-144}=\frac{-320}{-80}=4\)
\(\Leftrightarrow x^2=4.64=256\Leftrightarrow x=16hoacx=-16\)
\(\Leftrightarrow y^2=4.144=576\Leftrightarrow x=24hoacx=-24\)
\(\Leftrightarrow\frac{z}{15}=4\Leftrightarrow z=4.15=60\)
Chúc bạn học tốt
Bài làm :
Ta có :
\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{13}\left(1\right)\)\(\frac{y}{z}=\frac{4}{5}\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)Từ (1) và (2)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\left(\frac{x}{8}\right)^2=\left(\frac{y}{12}\right)^2=\left(\frac{z}{15}\right)^2=\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{-320}{-80}=4\)
\(\Rightarrow\hept{\begin{cases}\left(\frac{x}{8}\right)^2=4\Leftrightarrow\frac{x}{8}=\pm2\Leftrightarrow x=\pm16\\\left(\frac{y}{12}\right)^2=4\Leftrightarrow\frac{y}{12}=\pm2\Leftrightarrow y=\pm24\\\left(\frac{z}{15}\right)^2=4\Leftrightarrow\frac{z}{15}=\pm2\Leftrightarrow z=\pm30\end{cases}}\)
Vậy các cặp giá trị (x;y;z) thỏa mãn đề bài là: (16;24;30) ; (-16;-24;-30)
10.tìm x.y biết :
x/y=2/5và x+y=70
Ta có : x:2 = y:5 và x + y = 70
=> x / 2 = y / 5 và x + y = 70
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
x / 2 = y / 5 = x + y / 2 + 5 = 70 / 7 = 10
\(\Rightarrow\hept{\begin{cases}x=10.2=20\\y=10.5=50\end{cases}}\)
Có \(\frac{x}{y}=\frac{2}{5}\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{70}{10}=7\)
\(\Leftrightarrow\hept{\begin{cases}x=2\cdot7=14\\y=5\cdot7=35\end{cases}}\)
Theo đề bài, ta có:
\(\frac{x}{y}=\frac{2}{5}\Leftrightarrow\frac{x}{2}=\frac{y}{5}\) và x+y=70
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{70}{7}=10\)
Suy ra \(\hept{\begin{cases}x=10\cdot2=20\\y=10\cdot5=50\end{cases}}\)
Vậy x=20,y=50
tìm các số x,y,z biết x : y : z = 3 : 4 : 5và 2x^2 + 2y^2 - 3z^2
Thử nha ! sai xin lỗi bn !
Theo tỉ lệ ta cs
\(x:y:z=3:4:5\Rightarrow\frac{x}{\frac{y}{z}}=\frac{3}{\frac{4}{5}}\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2+2y^2-3z^2}{3^2+4^2+5^2}=\frac{2x^2+2y^2-3z^2}{50}\)
đến đây bn xem lại đề nha !
a)Cho x+y=5và xy=2. Tính |x-y|
b)cho x-y=3 và xy=1. Tính |x+y|
Tính A+B, A-B, B-A
a, A=x\(^2\)y+0,xy\(^3\)-7,5x\(^3\)y\(^2\)+x\(^3\)
B=3xy\(^3\)-x\(^2\)y+5,5x\(^3\)y\(^2\)
b, A=x\(^5\)+xy+0,3y\(^2\)-2
B=x\(^2\)y\(^3\)+5+1,3y\(^2\)
c, A=x\(^2\)y+xy\(^2\)-5x\(^2\)y\(^2\)+x\(^3\)
B=3xy\(^2\)-x\(^2\)y+x\(^2\)y\(^2\)