Cho tam giác ABC vuông tại A có AB=6cm,BC=10,phân giác BD.tính DA,DC
Cho tam giác ABC vuông tại A có AB=6cm,BC=10,phân giác BD.tính DA,DC
Cho tam giác ABC vuông tại A có AB=6cm,AC=10,phân giác AD.tính BC,DB,DC
Cho tam giác ABC vuông tại A có AB=6cm,BC=10,phân giác BD.tính DA,DC
Cho tam giác ABC vuông tại A có AB=6cm,AC=10,phân giác AD.tính BC,DB,DC
Cho tam giác ABC vuông tại A . Đường phân giác BD.Tính AB,BC biết AD=4cm ;DC=5cm
Ta có: AD+DC=AC(D nằm giữa A và C)
nên AC=4+5=9(cm)
cho tam giác ABC Vuông tại A có AB=6cm,AC=8cm,AH là đường cao.A)chứng minh tam giác HBA đồng dạng tam giác ABC,B)tia phân giác góc ABC cắt AC tại D,I là giao điểm của AH và BD.tính AD,DC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1
=>DA=3cm; DC=5cm
Cho Tam giác ABC vuông tại A ,có AB=6cm,AC=8cm
a)Tính độ dài cạnh BC và chu vi hình tam giác ABC
b)Đường phân giác của góc B cắt AC tại D.Vẽ DH(vuông góc)B(H thuộc BC)
Chứng minh:tam giác ABD = HBD
c)Chứng minh DA <DC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)
b) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)
c) Ta có: ΔABD=ΔHBD(cmt)
nên DA=DH(hai cạnh tương ứng)
mà DH<DC(ΔDHC vuông tại H)
nên DA<DC
giúp mình với
Cho tam giác ABC vuông tại A, Có AB=6cm: AC=8cm
A, Độ dài cạnh BC và chu vi tam giác ABC.
,B Đường phân giác của góc B cắt AC tại D. Vẽ DH vuông góc với BC
Chứng Minh: Tam giác ABD= Tam giác HBD
C, Chứng Minh DA<DC
BC^2 = AC^2 + BA^2
= 8^2 + 6^2
= 64+36= 100
BC^2 = \(\sqrt{100}\)
⇒BC = 10
CHU VI HÌNH TAM GIÁC LÀ: 10+8+6=24(cm)
xét tam giác ΔABD vs ΔHBD cs
góc A = góc H = 90 độ
AD cạnh chung
góc B1 = góc B2
nên ΔABD = ΔHBD ( ch-gn)
xét ΔHDC cs góc H = 90 độ
⇒DH < DC ( do DC là cạnh huyền )
mà DH = DA ( ΔABD = ΔHBD )
nên DC > DA
Cho tam giác abc vuông tại a có ab= 6 cm, bc= 10 cm, bd là phân giác góc \(\widehat{ABC}\) a)Tính da và dc
b) Qua ac vẽ đường thẳng vuông góc với bd tại m cắt ab tại e. Chứng minh \(\dfrac{em}{eb}\) = \(\dfrac{ea}{ec}\)
cho tam giác ABC vuông tại A , AB = 6cm , BC = 10 cm.
a) tính AC
b) Tia phân giác của \(\widehat{B}\)cắt AC tại D , DH vuông góc với BC . cm tam giác ABH cân
so sánh DA và DC
Hình bạn tự vẽ nhé!!!
a) Vì tam giác ABC vuông tại nên theo ĐL Pytogo ta có:
BC2 = AB2 + AC2
=> 102 = 62 + AC2
=> AC2 = 102 - 62
=> AC2 = 64
=> AC = 8 (cm)
b) Vì BD là tia phân giác góc ABC nên
Góc ABD = góc DBH
Xét tam giác ABD và tam giác HBD có:
Góc A = góc BHD (=90 độ)
góc ABD = góc DBH (cmt)
cạnh BD chung
=> tam giác ABC = Tam giác HBD ( ch-gn)
=> AB = HB ( 2 cạnh tương ứng)
Tam giác ABH có AB = BH (cmt)
=> Tam giác ABH cân tại B
Mik k biết làm câu so sánh bạn thông cảm nhé!!!
Các bạn thấy đúng thì k sai thì thôi nha.
cho tam giác abc vuông tại a có ab=6cm ac=8cm
a)tính độ dài cạnh BC và chu vi tam giác ABC
b)đường phân giác góc B cắt AC tại D.Vẽ DH vuông góc BC chứng minh tam giác ABD=TAM GIÁC HBD
c)chứng minh DA nhỏ hơn DC
d)chứng minh AB^2-DC^2=BD^2-HC^2 đang cần gấp ạ mai kiểm tra
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)
b) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)