Những câu hỏi liên quan
TN
Xem chi tiết
VM
17 tháng 6 2015 lúc 14:00

B  \(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{50^2-1}{50^2}\)

    \(=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)

mà    \(0

Bình luận (0)
RA
Xem chi tiết
VD
Xem chi tiết
DH
Xem chi tiết
DH
22 tháng 2 2016 lúc 21:48

\(=\frac{2\cdot4}{3^2}\cdot\frac{3.5}{4^2}\cdot\frac{4\cdot6}{5^2}\cdot......\cdot\frac{49\cdot51}{50^2}\)

=\(\frac{\left[2\cdot3\cdot4\cdot......\cdot49\right]\cdot\left[4\cdot5\cdot6\cdot.....\cdot51\right]}{\left[3\cdot4\cdot5\cdot....\cdot50\right]\cdot\left[3\cdot4\cdot5\cdot....\cdot50\right]}\)

=\(\frac{2\cdot51}{50\cdot3}\)

=\(\frac{17}{25}\)

Vì \(\frac{17}{25}\) ko phải là số nguyên nên B ko phải là số nguyên [ĐPCM]

Bình luận (0)
TT
Xem chi tiết
ND
Xem chi tiết
PQ
8 tháng 3 2018 lúc 7:36

Bạn tham khảo nhé 

Ta có : 

\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\)

\(B=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+\frac{5^2-1}{5^2}+...+\frac{50^2-1}{50^2}\)

\(B=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+\left(1-\frac{1}{5^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)

\(B=\left(1+1+1+1+...+1\right)-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-\frac{1}{5^2}-...-\frac{1}{50^2}\)

\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

\(A< 1-\frac{1}{50}\)

\(A< \frac{49}{50}\)\(\left(1\right)\)

Lại có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{50}-\frac{1}{51}\)

\(A>\frac{1}{2}-\frac{1}{51}=\frac{49}{102}\)\(\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{49}{102}< A< \frac{49}{50}\)

\(\Leftrightarrow\)\(49-\frac{49}{102}< 49-A< 49-\frac{49}{50}\)

\(\Leftrightarrow\)\(\frac{4949}{102}< B< \frac{2401}{50}\)

\(\Rightarrow\)\(B\notinℤ\)

Vậy B không là số nguyên 

Bình luận (0)
T7
4 tháng 2 2019 lúc 12:03

đúng ko zậy 

Bình luận (0)
DC
9 tháng 5 2020 lúc 20:08

bạn ấy làm đúng rùi đó

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
CS
Xem chi tiết
TH
9 tháng 4 2017 lúc 21:37

ko ngờ đấy mày lại ko được giải khi thi MYTS
 

Bình luận (0)
NN
11 tháng 4 2017 lúc 19:56

MYTS  là j ạ

Bình luận (0)
CS
12 tháng 4 2017 lúc 19:09

ko jup thì thôi đăng làm j 

Bình luận (0)
DH
Xem chi tiết
NL
5 tháng 3 2019 lúc 6:09

\(B=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{50^2-1}{50^2}\)

\(B=1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{50^2}\)

\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=49-A< 49\)

Mặt khác ta có:

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A< 1-\frac{1}{50}< 1\)

\(\Rightarrow B=49-A>49-1=48\)

\(\Rightarrow48< B< 49\)

\(\Rightarrow\) B nằm giữa 2 số nguyên liên tiếp nên B không phải là số nguyên

Bình luận (0)
NT
5 tháng 3 2019 lúc 13:05

\(B=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+\frac{1}{2500}\)

\(B=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+\frac{1}{50^2}=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)\)(từ 2 đến 50 có 49 số nên có 49 số 1)

\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)<49\) (1)

Nhận xét: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};...;\frac{1}{50^2}<\frac{1}{49.50}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}<1\) => \(-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)>-1\)

=> \(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)>49-1=48\)(2)

Từ (1)(2) => 48 < B < 49 => B không phải là số nguyêm

Bình luận (0)
DT
7 tháng 8 2019 lúc 20:36

B=22−122+32−132+...+502−1502B=22−122+32−132+...+502−1502

B=1−122+1−132+...+1−1502B=1−122+1−132+...+1−1502

B=49−(122+132+...+1502)=49−A<49B=49−(122+132+...+1502)=49−A<49

Mặt khác ta có:

A=122+132+...+1502<11.2+12.3+...+149.50A=122+132+...+1502<11.2+12.3+...+149.50

⇒A<1−12+12−13+...+149−150⇒A<1−12+12−13+...+149−150

⇒A<1−150<1⇒A<1−150<1

⇒B=49−A>49−1=48⇒B=49−A>49−1=48

⇒48<B<49⇒48<B<49

⇒⇒ B nằm giữa 2 số nguyên liên tiếp nên B không phải là số nguyên

Bình luận (1)